WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 | 5 |   ...   | 14 |

В первом случае разрабатывается полная и достаточно подробная структура ИВК, обеспечивающая стыковку как с объектами исследования, так и с потребителями информации, ожидаемые характеристики которой соответствуют требованиям технического задания. Затем структурная схема разбивается на функционально законченные части, которые в дальнейшем разрабатываются как самостоятельные модули, отвечающие индивидуальным требованиям. Таким образом, характеристики системы должны уточняться после разработки всех модулей. Это затрудняет выбор оптимального варианта построения ИВК.

Метод проектной компоновки заключается в проектировании ИВК с максимальным использованием выпускаемых агрегатных средств и применением расчетных методов определения характеристик системы по характеристикам отдельных блоков. Этот подход позволяет выбрать оптимальный вариант построения ИВК, не исключает индивидуального проектирования модулей с характеристиками, отличными от существующих, максимально сокращает сроки проектирования.

Для практической реализации метода проектной компоновки необходимо учитывать требования ГОСТ 22.317-77 и ГОСТ 8.009-84.

Исходными данными для функционального синтеза являются функциональные спецификации ТЗ, в частности круг решаемых задач, режимы испытаний и протоколы обмена информацией. Цель функционального синтеза - разработка архитектуры ИВК на уровне логической структуры без конкретизации типов системного оборудования. На этой стадии проектирования очень удобным аппаратом может стать морфологический анализ круга решаемых задач.

Назначение морфологического анализа - установление соответствия между словесным описанием и структурой алгоритмов функционирования системы.

На стадии структурного проектирования функциональные символы морфологических таблиц преобразуются в конкретные типы системного оборудования.

Этот процесс можно назвать генерацией системных вариантов.

Далее необходимо перейти к параметрическому синтезу системы. Автоматизированные методы параметрической оптимизации основаны на численных методах поиска экстремума функции одной или нескольких переменных.

При этом необходимо решить три задачи: разработать математическую (оптимизационную) модель системы, выбрать критерий и метод оптимизации.

Под математической моделью системы понимается описание взаимосвязи (числовой или логической) варьируемых параметров и выходных показателей при определенной совокупности входных воздействий. Задача синтеза системы - выбор ее параметров, удовлетворяющих поставленным требованиям. Для формализации процесса выбора эти требования необходимо задать в виде некоторой системы чисел W0 и затем получить при расчете системы соответствующие им показатели в виде совокупности выходных характеристик W. Процедура синтеза заключается в нахождении параметров, удовлетворяющих условиям Wj Woj Wj W, Woj Wo.

, где При корректной постановке задачи один из компонентов множества W будет целевой функцией S, минимизируемой или максимизируемой в процессе синтеза. Под целевой функцией понимается основной показатель эффективности.

Все параметры системы можно рассматривать как входные сигналы оператора L синтезируемой системы, под которым понимается совокупность математических операций, описывающих численные или логические соотношения между входными и выходными сигналами. Система выходов представляет собой совокупность ( вектор) критериальных функций, включая ( при необходимости) целевую функцию S. Совокупность входных сигналов отображает технические параметры X рассматриваемой системы и возмущения Y. действующие на систему.

В системе могут присутствовать и сигналы Z, имеющие в отличие от внешних X и Y источники внутри синтезируемой системы, которые надо пересчитывать во входные независимые сигналы. Процесс параметрического синтеза можно изобразить в виде замкнутой системы (рис. 3), где под Хо понимается совокупность параметров, отвечающих заданным условиям оптимизации.

Следующая задача состоит в выборе критерия оптимизации, который в той или иной форме обобщает выходные ( критериальные) показатели. Подобный обобщающий функционал называют функцией поиска. Обобщающий функционал Рис. 3. Схема системного параметрического анализа позволяет для каждой точки ( вектора) пространства варьируемых параметров получать единую оценку и тем самым сравнивать решения и выбирать лучшее при использовании методов перебора и вычислять значение градиента и формировать направление поиска при использовании градиентных методов.

Более общими являются функции поиска оптимального значения S (x) o целевой функции S(x) с ограничением остальных критериальных компонентов:

(13) So (x) = min(max)S( x) приW Woj.

j В качестве целевой функции для ИВК может быть выбрана вероятность точного обслуживания, под которой понимается вероятность обработки всего потока первичной информации датчиков с заданной точностью и достоверностью. Методы оптимизации делятся на однопараметрические ( одна функция поиска) и многопараметрические. Примеры использования некоторых методов в задачах проектирования ИВК рассмотрены в [2, 3].

Таким образом, параметрический синтез сводится к направленному перебору вариантов структур проектируемой системы. При отсутствии варианта, удовлетворяющего всем поставленным требованиям, возникает необходимость либо в проектировании нестандартного оборудования, либо в изменении набора структур, или функциональной схемы, или требований ТЗ.

Процедура, системотехнического проектирования в обобщенной форме представлена на рисунке 4. Из блок-схемы следует, что процесс проектирования ИВК - трудная и многоплановая задача. Единственным способом сократить сроки проектирования является создание систем автоматизированного проектирования ИВК.

Рис. 4. Блок-схема процедуры системного проектирования ИВК Безусловно, САПР потребует значительных затрат на разработку специфического информационного и программного обеспечения, основу которого составляют модели различного назначения. Проектировщик должен располагать моделями, отображающими метрологические особенности, конструктивную и информационную надежность системы, характеризующими производительность в различных ее аспектах, и наконец моделями параметрического синтеза. Последний тип моделей не имеет самостоятельного значения. Из предыдущего материала следует, что введение в любую модель блока анализа критериальных результатов и решающего правила подбора параметров позволяет оптимизировать ее структуру.

Существует два основных метода моделирования: аналитический и имитационный. В первом случае поведение объекта отражается в виде зависимостей, допускающих исследования методами математическогоанализа. В случае имитационного моделированияповедение объекта многократно воспроизводитсяпоследовательностьюарифметическихи логических операций на ЭВМ, что не исключает использованиематематическихзависимостей, но все соотношения представляются в числовой форме, Результат имитационногомоделированиявыбор чисел (точечная оценка). Многократноевоспроизведениеповедения объекта при различных воздействиях позволяет всесторонне оценить качество его функционирования.

Метод имитационного моделирования со случайными воздействиями, иначе метод статистического моделирования, или метод Монте-Карло, дает возможность получать интервальные оценки выходных характеристик объекта с заданной точностью и достоверностью.

Основные достоинства аналитических моделей - простота их разработки и анализа, а также быстрое получение и наглядность результатов [2, 4]. Недостаток - существенное расхождение между реальными характеристиками объектов и характеристиками, полученными из модели. Имитационные модели обеспечивают адекватность характеристик, но требуют больших затрат на разработку и использование.

2. ПРИБОРНЫЙ ИНТЕРФЕЙС IEC 625-Основные положения, признаки классификации и общие требования к ИВК в целом и их компонентам, а также требования к проведению испытаний установлены ГОСТ 26.203-81 [5]. В соответствии с ним ИВК представляет собой автоматизированное средство измерений электрических величин, на основе которого возможно создание ИИС путем присоединения к входу измерительных каналов ИВК датчиков измеряемых величин с унифицированным электрическим выходным сигналом и генерации на основе программных компонентов ИВК программ обработки информации и управления экспериментом, ориентированных на решение конкретных задач.

Выбор комплекса нормированных метрологических характеристик ИВК производится в соответствии с ГОСТ 8.009-72.

В АСЭТ используется интерфейс МЭК (ГОСТ 26.003-80). Этот интерфейс называют также IEEE-48-8 (Institute of Electrical and Electronics), или GPIB (General Purpose Interface Bus), или HP-IB (Hewlett Parkart-Interface Bus). Интерфейс разработан для программируемых и непрограммируемых электронных измерительных приборов. Он представляет собой 16- линейную двунаправленную пассивную систему связи, к которой можно подключить параллельно до приборов, в том числе контроллер. Функционально линии, образующие магистраль, группируются в три шины: данных, согласования передачи и общего управления (рис. 5).

Конструктивно интерфейс состоит из кабеля, разъемов и модулей на печатных платах (интерфейсных карт). Кабель осуществляет параллельное соединение всех устройств таким образом, что данные от одного устройства могут передаваться либо одному, либо нескольким устройствам, входящим в систему.

Интерфейсные карты формируют сигналы обмена информацией.

Шина данных Д0...Д7 состоит из восьми линий, по которым осуществляется обмен (передача - прием) информацией бит - параллельным, байт - последовательным способом. По этим шинам передаются данные: результаты измерений, адреса, программы, управляющие байты, байты состояний.

Рис. 5. Измерительно-вычислительный комплекс на базе КОП Обмен данными может происходить между передающими измерительными модулями ( источниками) и принимающими ( приемниками) или между контроллером и подчиненными ИМ. В интерфейсе различают следующие модули ( см. рис.5): контроллер ( К), передающий и принимающий (ИМПП), только передающий ( ИМПЕ), только принимающий ( ИМПР). Каждый модуль должен выполнять хотя бы одну функцию. Одновременно может работать несколько принимающих и только один передающий модуль.

Из всех ИМ нужно выделить контроллер, назначение которого организация взаимодействия модулей системы. Команды контроллера указывают адрес модуля - передающего или принимающего, а также характер и последовательность операций. Контроллер строится на базе микропроцессора и выполняет следующие функции: задание программы, управление процедурой и интерпретация результатов измерений.

Шина согласования передачи (синхронизации) объединяет три линии, по которым передаются сигналы: СД (DAV) - " сопровождение Данных"; ГП (NRED) - " готов к приему"; ДП (NDAC) - " данные приняты". Перечисленные сигналы служат для синхронизации обмена между модулями (рис. 6).

Управляющими являются инверсные значения сигналов, то есть низкие уровни. Сигнал СД вырабатывается передающим устройством ИМПЕ (ИМПП, К), когда данные готовы. Если принимающий модуль ИМПР (ИМПП, К) не занят (высокий уровень сигналов ГП и ДП), то передающий модуль ИМПЕ выставляет данные (байт информации) на шины Д0-Д7. Устройство ИМПР отвечает сигналом ГП, устройство ИМПЕ снимает сигнал СД, а ИМПР принимает с шин Д0...Д7 данные, после чего снимает сигнал ГП. В конце цикла обмена ИМПР вырабатывает сигнал ДП, который указывает, что данные приняты а можно продолжить работу. Если необходимо передать следующий байт, цикл повторяется.

Рис. 6. Временная диаграмма обмена данными в ИВК с КОП Шина общего назначения состоит из пяти линий, по которым передаются сигналы между контроллером и другим ИМ системы: сигнал управления УП вырабатывается контроллером, по этому сигналу все устройства переходят в режим ожидания, и контроллер управляет работой системы; по шинам данных передаются адреса ( адрес передающего устройства, адрес принимающего устройства) или команды ( универсальная, вторичная, приема, передачи); когда сигнал УП снимается, начинают обмен остальные ИМ системы; сигнал очистки интерфейса ОИ вырабатывается контроллером и переводит все ИМ системы в начальное состояние; сигнал запроса на обслуживание 30 вырабатывается модулем системы, когда требуется прервать текущий обмен по магистрали и перейти на приоритетное обслуживание данного ИМ контроллером; сигнал дистанционного управления ДУ вырабатывается контроллером и переключает ИМ с местного управления (с лицевой панели) на дистанционное; сигнал КП (конец передачи) устанавливается в низкий уровень одновременно с передачей последнего байта данных и говорит об окончании передачи сообщений по шине данных.

Дистанционные сообщения Все сообщения, передаваемые через КОП, подразделяются на два класса:

интерфейсные сообщения; сообщения устройств. В каждый момент времени может передаваться только одно многолинейное сообщение.

Интерфейсные сообщения ( команды) используются для управления функциями интерфейса (табл.1); они передаются при низком состоянии линии УП и в устройство не проходят ( кроме сообщений запуск устройства, сброс универсальный и сброс адресный).

Таблица 1. Кодирование многолинейных сообщений Код Логическое значение на линиях данных многолинейных команд ЛД7 ЛД6 ЛД5 ЛД4 ЛД3 ЛД2 ЛД1 ЛДГАК X 0 0 0 X X X X ГУК X 0 0 1 X X X X ГАП X 0 1 X X X X X ГАИ X 1 0 X X X X X ГВК X 1 1 X X X X X ПНМ X 0 0 0 0 0 0 СБА X 0 0 0 0 1 0 КПР X 0 0 0 0 1 0 ЗАЛ X 0 0 0 1 0 0 ВУП X 0 0 0 1 0 0 СБУ X 0 0 1 0 1 0 ДПР X 0 0 1 0 1 0 ОПО X 0 0 1 1 0 0 ЗПО X 0 0 1 1 0 0 ЗПМ X 0 0 1 0 0 0 ЗПР X 1 1 1 Н Н Н Н ОПР X 1 1 0 С П П П НПМ X 0 1 1 1 1 1 НПД X 1 0 1 1 1 1 Обозначения: Х - линию использовать не обязательно; С - бит " считывание", приписывающий истинное значение биту состояния при параллельном опросе. Параллельный опрос возможен, если этот бит совпадает с битом, вы даваемым устройством; П - биты, приписывающие линию данных, по которой устройство должно выдавать местное сообщение реакции на параллельный опрос (РОП); Н- биты сообщения, на которые приемник не должен реагировать.

Группа универсальных команд ( ГУК) - команды, вызывающие соответствующее действие одновременно во всех устройствах. К ним относятся ДУ, ОИ, УП, ОПО, ЗПО, ДПР, СБУ, ЗПМ.

Группа адресных команд ( ГАК) - команды, вызывающие соответствующее действие только в устройствах, запомнивших свой адрес. К ним относятся ПНМ, СБА, КПР, ЗАЛ, ВУП.

Группа адресов приемников ( ГАП) - команды, используемые с целью включения определенных устройств для приема информации из КОП. Каждому приемнику должен быть приписан свой "адрес на прием" (МАП), младшие 5 бит которого могут совпадать с аналогичными битами его адреса источника (МАИ).

Группа адресов источников ( ГАИ) - команды, используемые с целью включения определенного устройства для передачи информации в КОП и для выключения любого другого устройства, уже работающего в качестве источника. Каждому источнику должен быть приписан свой адрес источника ( МАИ), младшие 5 бит которого могут совпадать с аналогичными битами его адреса на прием (МАП).

Группа вторичных адресов ( ГВК) - команды, используемые в качестве второго адресного байта при адресации устройства на прием или передачу. В устройстве, содержащем как функции интерфейса " расширенный источник" (ИР), так и "расширенный приемник" (ПР), можно применять одинаковый вторичный адрес (МВА) как для источника (И), так и для приемника ( П). К этой группе относятся также команды ЗПР, ОПР.

Сообщения устройств - сообщения, используемые устройствами для обеспечения выполнения ими основной задачи. Эти сообщения передаются при высоком состоянии линии УП и не влияют на состояния интерфейсных функций. Общие правила кодирования сообщений устройств приведены в таблице 2.

К сообщениям устройств относятся: программные данные ( код типа функции, код значения функции), основные данные, данные о состоянии. Коды и форматы основных данных, программных данных и данных о состоянии приведены в разделе 2.4.

Программные ( управляющие) данные ( код значения функции, код типа функции - сообщения, используемые для подготовки устройства к исполнению основной задачи.

Таблица 2. Кодирование сообщений устройств Код передачи прогЛогическое значение на линиях данных раммных и основных данных ЛД7 ЛД6 ЛД5 ЛД4 ЛД3 ЛД2 ЛД1 ЛДX 0 0 X X X X X Тип функции Значение функции X 0 1 X X X X X Резерв X 1 1 X X X X X Основные данные - сообщения, относящиеся непосредственно к выполнению основной задачи устройства (например, представление напряжения, измеренного цифровым вольтметром; представление частоты, измеренной частотомером; текст с экрана дисплея и т.п.).

Pages:     | 1 | 2 || 4 | 5 |   ...   | 14 |






















© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.