WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |
В.В. ПЕТРОСЬЯНЦ ИЗМЕРИТЕЛЬНО- ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. В. ПЕТРОСЬЯНЦ ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ (канал общего пользования) Рекомендовано Министерством Общего и профессионального образования Российской Федерации в качестве учебного пособия для студентов высших технических учебных заведений Владивосток 1996 1 УДК: 681.325.5-181.4(075.8) Петросьянц В.В. Измерительно-вычислительные комплексы ( канал общего пользования). - Владивосток: Изд-во ДВГТУ, 2007.- 159 с.

Излагаются основы построения и применения измерительновычислительных комплексов (ИВК). Рассматриваются вопросы проектирования и программного обеспечения ИВК, функционирования интерфейса КОП, кодирования информации, сопряжения КОП с системной шиной компьютеров. Приводятся схемы и программы разработанного учебного ИВК.

Для студентов вузов, обучающихся по направлению "Информатика и вычислительная техника"; может быть использована разработчиками ИВК различного назначения.

Рецензенты :

профессор И.Н. Каневский (Дальневост. гос. ун-т рыбной пром-ти и хоз-ва), доцент В.В. Крюков (Владивост. гос. ун-т экономики и сервиса) ISBN 5-7596-0103-2 © Издательство ДВГТУ, 2007 2 ВВЕДЕНИЕ В пособии излагается материал по созданию измерительновычислительных комплексов ( ИВК) на базе распространенного интерфейса "канал общего пользования" (КОП).

Появление ИВК было связано, с одной стороны, с усложнением испытательных, измерительных и исследовательских задач, увеличением их объема и количества, необходимостью выполнения больших объемов вычислений и протоколов, а с другой стороны, - с появлением небольших по размеру, относительно дешевых, но эффективных цифровых вычислительных машин и цифровых средств электроизмерительной техники, позволяющих не только автоматизировать процессы измерения, выдачи и коммутации электрических сигналов, но и осуществлять обмен информацией с вычислительной машиной.

Современный этап развития ИВК характеризуется переходом к созданию сложных иерархических комплексов, в которых осуществляется децентрализованная обработка информации, а отдельные части ИВК зачастую распределены в пространстве. Наблюдается тенденция ко все большему использованию стандартных аппаратных и программных средств сопряжения на всех уровнях иерархии, что даст возможность создавать ИВК непосредственно у пользователя, исходя из его специфических требований.

Целью настоящего пособия является обобщение имеющихся сведений о принципах построения, составе аппаратных и программных средств, методах проектирования ИВК и их применения для решения измерительных задач.

Имеется много специальной литературы по проектированию и использованию ИВК. Однако не специалисту бывает трудно разобраться самостоятельно и применить эти знания на практике. Решению этой задачи и посвящено предлагаемое учебное пособие. В нем материал скомпанован таким образом: вначале даются общие представления об ИВК, интерфейсе КОП, а затем на конкретном примере рассматриваются вопросы создания ИВК для решения измерительной задачи. Приводятся алгоритмы, схемы и программы управления комплексом.

Поскольку отмечается тенденция применения стандартных измерительных приборов и широко распространенных ЭВМ при создании различных информационно-измерительных систем, в данном пособии приводится пример разработки ИВК на базе широко используемых компьютеров типа IBM PC, стандартного интерфейса МЭК 625-1 и стандартных измерительных приборов с КОП. Трудность разработки ИВК заключается в том, что для решения конкретных измерительных задач требуется разработка уникальных программ управления.

В пособии предпринята попытка, с одной стороны, дать общий подход к проектированию ИВК, с другой стороны, на примере решения конкретной измерительной задачи - показать возможность создания ИВК на базе КОП и стандартных аппаратных средств; показать принципы работы одного из наиболее распространенных интерфейсов.

Программы управления контроллером-адаптером и программы управления измерительным процессом разработаны коллективом студентовдипломников под руководством автора данного пособия. Для постановки цикла лабораторных работ по изучению учебного ИВК желающие могут заказать контроллер-адаптер и дискету, на которой записана программа управления учебным ИВК, обучающая и контролирующие программы.

Пособие предназначено для студентов старших курсов, знакомых с основами микропроцессорной техники, программированием на языках различного уровня, а также для слушателей факультета повышения квалификации.

1. ОБЩИЕ ВОПРОСЫ ПОСТРОЕНИЯ И ПРИМЕНЕНИЯ ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫХ КОМПЛЕКСОВ Измерительно-вычислительные комплексы (ИВК) можно определить как совокупность функционально связанных устройств, обеспечивающих измерение, сбор, вычислительную обработку и распределение измерительной информации в системах управления производственными процессами и объектами [1-3].

ИВК являются важнейшей разновидностью информационноизмерительных систем (ИИС). К ИИС кроме ИВК относятся:

системы сбора измерительной информации от исследуемого объекта или просто измерительные системы;

системы автоматического контроля, предназначенные для контроля за работой разного рода машин, агрегатов или технологических процессов;

системы технической диагностики, предназначенные для выявления технических неисправностей различных изделий;



телеизмерительные системы, предназначенные для сбора измерительной информации с удаленных на большие расстояния объектов.

Так же как ИИС, ИВК представляют собой автоматизированные средства измерений и обработки измерительной информации, предназначенные для применения на сложных объектах. Отличительной чертой ИВК является наличие в системе свободно программируемой ЭВМ, которая используется не только для обработки результатов измерения, но и для управления самим процессом измерения, а также для управления воздействием ( если это необходимо) на объект исследования (рис. 1).

Информация от объекта исследования поступает на определенное множество первичных измерительных преобразователей ( ПИП), преобразуется в электрическую форму и передается на средства измерения и преобразования информации ( СИПИ), в которых сигналы подвергаются обработке и аналогоцифровому преобразованию. Затем сигналы передаются на ЭВМ для обработки по определенным программам или накопления, а также на средства отображе ния информации (СОИ) для индикации или регистрации. Устройство формирования управляющих внешних воздействий (УВВ) посредством исполнительных устройств ( ИУ) воздействует на объект исследования для регулирования, тестирования и т.п.

Рис. 1. Структурная схема двухуровнего ИВК Первичные измерительные преобразователи ПИП и исполнительные устройства ИУ в состав ИВК не входят.

Современные сложные ИВК часто рассматривают как композицию двух комплексов:

1)устройство связи с объектом (СИПИ, СОИ, УВ);

2)вычислительная часть.

Вычислительную часть образует свободно программируемая ЭВМ с развитым математическим обеспечением ПМО. Вычислительная машина управляет в ИВК всеми процессами сбора и обработки информации.

Структура ИВК может иметь один или два уровня. В одноуровневой имеется только магистраль ЭВМ, к которой подключены все устройства ИВК.

Двухуровневая содержит еще магистраль приборов. Сигналы взаимодействия между магистралями передаются через системный контроллер-транслятор СКТ.

Управление ИВК от ЭВМ осуществляют специальные программы-драйверы.

Программными компонентами ИВК являются системное программное обеспечение (программы ЭВМ и ИВК, обеспечивающие работу ИВК в диалоговом режиме, управление измерительными компонента- ми и обменом информацией между ними, проверку работоспособности ИВК) и прикладное программное обеспечение ( типовые программы обработки измерительной информации, планирование эксперимента, метрологического обслуживания ИВК).

Изменение структуры и методов обработки измерительной информации программным путем позволяет легко приспосабливать ИВК к особенностям объекта исследования.

Создание ИВК обеспечивает построение информационно-измерительных систем (ИИС) нового поколения, особенности которых:

расширение функциональных возможностей в отношении сбора, адаптации, распределения за счет перепрограммирования в процессе обработки формируемых массивов измерительной информации и управления сложными автоматическими комплексами и системами;

повышение таких показателей, как точность и достоверность измерений, за счет усреднения и статистической обработки измерительных данных с учетом влияния внешних факторов.

На вычислительные средства, используемые в измерительной аппаратуре, могут быть возложены следующие функции:

фильтрация, выявление и устранение отклонений сигналов от заданного уровня; внесение поправок; учет влияния внешних факторов; вычисление результатов косвенных, совокупных и совместных измерений; определение статистических характеристик измеряемых величин; адаптация, оценка достоверности результатов измерений и т.д.;

накопление и хранение полученной информации; хранение программ реализации алгоритмов обработки; хранение планов проведения эксперимента в зависимости от полученных результатов; сервисная обработка измерительной информации (представление в виде таблиц, графиков, моделей и др.);

управление блоками с целью организации запросов, очередей, приоритетов, диалогового режима с операторами; обращение к памяти; контроль работоспособности блоков, поверка метрологических характеристик.

В общем случае использование в качестве управляющего устройства вычислительной машины позволяет автоматизировать процедуры прохождения измерительной информации, начиная от датчика физических величин и до момента принятия решения об истинности результатов измерений.

Одним из важных компонентов ИВК являются устройства сопряжения, содержащие в своем составе микропроцессорные средства и обеспечивающие соединение узлов и блоков как с друг другом, внутри измерительных приборов, комплексов и систем, так и с внешними устройствами систем управления технологическими процессами и объектами.

Таким образом, ИВК в настоящее время приобретают особо важное значение в развитии современных средств измерений, поскольку расширяют их функциональные возможности и улучшают метрологические характеристики.

Создаваемые на основе ИВК современные ИИС повышают эффективность автоматизированных систем управления технологическими процессами, автоматизированных систем научных исследований и комплексных испытаний, систем автоматизированного проектирования, гибких автоматизированных производств и автоматизированных обучающих систем.

1.1. Государственная система приборов и агрегатные комплексы Первоначально ИВК разрабатывались индивидуально для каждой конкретной измерительной задачи, причем всякий раз заново разрабатывались не только структура системы, но и все ее функциональные узлы. Такой подход оказался нерентабельным - срок разработки затягивался, стоимость ИВК была высокой. Поэтому в настоящее время реализуется агрегатный принцип построения, согласно которому ИВК строится из конструктивно законченных и выпускаемых серийно приборостроительной промышленностью функциональных узлов, объединенных общим алгоритмом функционирования.





В ГСП входят агрегатные комплексы средств электроизмерительной техники ( АСЭТ), вычислительной техники ( АСВТ), контроля и регулирования (АСКР), комплекс технических средств локальных информационноуправляющих систем (КТС ЛИУС) и др.

При построении агрегатированных систем должны быть решены задачи совместимости и сопряжения модулей как друг с другом, так и с внешними средствами. Для модулей ИВК можно выделить пять видов совместимости [2]:

информационную, конструктивную, энергетическую, метрологическую, эксплуатационную.

Преимущества принципа агрегатирования наиболее полно проявляются в том случае, если информационная совместимость определяется унификацией измерительных сигналов и применением стандартных интерфейсов.

Электрические логические и конструктивные условия, которые определяют требования к соединяемым функциональным узлам и связям между ними, образуют понятие интерфейса. Электрические условия определяют требования к параметрам сигналов взаимодействия и способу их передачи; логические - номенклатуру сигналов; конструктивные - конструктивные требования к элементам интерфейса: вид разъема, место его расположения, порядок распайки контактов и т.д.

Можно выделить три основных варианта построения ИВК:

с системным интерфейсом и унифицированными узлами сопряжения интерфейса и измерительных приборов;

с приборныминтерфейсоми измерительными средствами(по ГОСТ 26.201-84);

с приборным интерфейсом МЭК (по ГОСТ 26.003-80) и серийно выпускаемыми измерительными приборами и устройствами. Этот интерфейс называют также IEEE-48-8 (Institute of Electrical and Electronics), или GPIB (General Purpose Interface Bus), или HP-IB (Hewlett Packart-Interface Bus). Интерфейс раз работан для программируемых и непрограммируемых электронных измерительных приборов и будет подробно рассмотрен во второй главе.

Системы первого типа могут быть скомпонованы потребителем самостоятельно. При этом достигаются высокие и стабильные метрологические характеристики, быстродействие, степень подавления помех. Однако структура избыточна: имеется блок сопряжения системного и приборного интерфейсов (ИВК-7, ИВК-8, ИВК-12, ИВК-15).

Во втором варианте обеспечивается гибкость и возможность наращивания системы, а ее функциональные возможности и технические характеристики максимально согласуются с требованиями эксперимента. Однако крейтовая организация ( крейт-совокупность объединенных в единую конструкцию 25 ячеек-модулей, контроллера крейта, интерфейсной шины с 86-контактными разъемами и источника питания) усложняет и удорожает систему. Поэтому применение ИВК на базе КАМАК оправдано в основном для автоматизации научных исследований, когда, с одной стороны, каждый раз приходится решать сложные, но единичные задачи, а с другой - автоматизация необходима. Выпускаются следующие ИВК КАМАК: ИВК-2, ИВК-6, ИВК-10, ИВК-16 и др.

Третий вариант построения систем целесообразен для автоматизации решения типовых, часто повторяющихся задач в различных отраслях народного хозяйства, а также специфических, но часто повторяющихся задач в одной или нескольких отраслях. Например, К750, К754, К755, К756.

Для АСЭТ принята единая система несущих конструкций. Основной несущей конструкцией является плата типа "Европа-2". Для обеспечения информационной совместимости на всех уровнях принята совокупность стандартных интерфейсов: на первом уровне - магистральный параллельный асинхронный 16-разрядный интерфейс И-41 ОСТ 25.969-83 ( аналог MULTIBUS, разработанный фирмой Intel) [3], организованный по принципу " Общей шины", допускающий мультипроцессорный режим работы со средствами ввода - вывода и хранения информации (логические и электрические условия соответствуют ре комендациям МЭК); на втором уровне - приборный магистральный интерфейс МЭК 625-1 ГОСТ 26.003-80 ( согласование с нижним уровнем осуществляется при помощи модуля сопряжения, а приборы подключаются непосредственно);

на системном уровне - магистральный сетевой интерфейс ГОСТ 26.139-84 (МЭК).

Таким образом, агрегатные средства позволяют строить разнообразные ИВК по принципу блочно-модульного конструирования методами проектной компоновки с полностью программируемыми функциями всех измерительных каналов, т.е. гибкие системы с наращиваемой измерительно-вычислительной мощностью. Такой способ построения ИВК значительно упрощает и сокращает сроки создания систем.

1.2. Программное обеспечение ИВК Уровень и пути развития ИВК во многом определяются программным обеспечением (ПО): совокупностью программ, используемых при подготовке и решении задач, управлении, проектировании и проверке работоспособности элементов системы. Программное управление, т.е. управление функционированием системы путем изменения программы, обеспечивает логическую гибкость и многофункциональность ИВК.

В соответствии с функциями, выполняемыми его компонентами, ПО ИВК можно разбить на два вида: общее и специальное (рис. 2).

Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.