WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 || 3 |

Функция, описывающая распределение освещенности в изображении тест-объекта "линейная решетка", есть двумерная (квазиодномерная) функция (рис.13), имеющая синусоидальную форму на высоких и средних частотах. При оценке объективов, строящих изображение протяженных объектов, большую роль играют способы, основанные на наблюдении и измерении изображения решетки переменной частоты.

Рис.В частности, до настоящего времени используется визуальная оценка по различимости штрихов в изображении штриховой миры, построенной системой. Критерием разрешающей способности при этом служит частота того поля миры, в изображении которого можно уверенно различить темные и светлые штрихи и определить их количество. Частотной характеристикой качества изображения служит также модуляционная передаточная функция, называемая иногда частотно-контрастной характеристикой (ЧКХ).

Тест-объект "линейная решетка" описывает часто встречающиеся в оптической измерительной практике объекты, например, такие как шкала, биссектор, периодические структуры на аэрокосмических снимках земной поверхности.

ОПТИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ИЗОБРАЖЕНИЯ ВТОРОГО РОДА Теневая картина (тенеграмма) Революцию в оптическом контроле и измерениях совершил Леон Фуко, впервые предложивший метод исследования деформаций волнового фронта, связанных с аберрациями оптических систем и ошибками оптических элементов.

Метод ножа Фуко и вообще все теневые (шлирен) -методы полностью доказали свою исключительную полезность для контроля оптических поверхностей. Оптические аберрации, дифракция света и деформации не полностью обработанных поверхностей вызывают отклонение лучей от теоретических траекторий и искажения волнового фронта. Основная идея шлирен-методов как раз и состоит в обнаружении боковых смещений таких лучей за счет их задерживания или модификации. Это осуществляется путем помещения специальных экранов в плоскость схождения пучков лучей от через контролируемой оптической поверхности или системы.

Рис. При отсуствии ошибок зеркало, создающее изображение точечного тест-объекта, выглядит равномерно освещенным. Пятно рассеяния наполовину перекрывают "ножом Фуко" - непрозрачной заслонкой с прямолинейным краем, и наблюдают из зафокальной области характер освещения поверхности. Hаличие ошибок (например, краевая зона на рисунке (рис.14) создает светотень, визуализирующую рельеф ошибок поверхности в результате срезания ножом пучков лучей от неверно заклоненных участков волновой поверхности. Верхняя область краевой зоны зрачка исследуемого фронта на рис.14) дает участки потемнения в теневой картине. Нижняя область краевой зоны дает участки максимальной освещенности в теневой картине. Пучки от сферических участков волновой поверхности перекрываются (а следовательно и ослабляются) лишь наполовину, и соответствующая зона зрачка имеет освещенность порядка 50%. Если нож помещают между идеальным сферическим зеркалом и его фокусом, теневая картина состоит из резко разделенных темной и светлой областей и первая из них перемещается по зеркалу в том же направлении, что и экран.

Если нож находится за фокусом, направление перемещения темного участка меняется на противоположное. И, наконец, при введении ножа точно в фокус зеркало затемняется внезапно и полностью, без каких-либо заметных движений теневой картины. Это является, кстати, очень точным способом определения положения центра кривизны. Если контролируемое зеркало не является сферическим, и каждый его участок имеет свой отличный радиус кривизны, при помещении ножа в различные точки относительно оптической оси соответствующая зона поверхности темнеет.

У неправильного вогнутого зеркала существует много участков с различными радиусами и центрами кривизны, и при перемещении ножа сразу или поочередно затемняются различные участки поверхности. Для умозрительного представления процесса формирования теневой картины достаточно представить себе источник света, помещенный у противоположного ножу края детали. При таком допущении расшифровка любой теневой картины становится несложной.

Теневой метод применяется для контроля деформаций волнового фронта, вызванных ошибками и аберрациями в процессе изготовления прецизионных оптических поверхностей и элементов, особенно - крупногабаритных астрономических зеркал, при контроле свильности оптического стекла, исследованиях воздушных потоков и других явлений.

Основными достоинствами шлирен-методов являются их высокая чувствительность и простота схемной реализации и качественной интерпретации результатов. По простоте устройства и реализации метод Фуко является уникальным по сравнению с другими оптическими методами и может рассматриваться как первый по настоящему производственный способ, на основе которого были разработаны другие многочисленные варианты оптического контроля.

Этот метод удобен для обнаружения поперечных аберраций системы..

В процессе контроля непрозрачным экраном, помещенным в плоскость теоретического схождения лучей, пересекают часть отраженного или дифрагированнного света, в результате чего возникает теневая картина, указывающая на наличие погрешностей у контролируемой детали (рис.14).

К недостаткам этого метода можно отнести непреодоленные до конца трудности количественной интерпретации теневого изображения, в результате чего метод применяется преимущественно для технологического контроля в форме качественных оценок состояния оптических поверхностей и материалов, а также уровня аберраций оптических элементов и систем.

Достоинства метода:

1. Впервые получена возможность визуальных наблюдений малых деформаций волнового фронта на выходе из системы;

2. Высокая чувствительность порядка 0,1;

3. Наглядность позволяет наблюдать характер искажения волнового фронта, место расположение, форму, величину, протяженность, интенсивность освещенности.

Недостатки метода:

Метод применяется в основном, как качественный метод оценки и применяется при изготовлении оптических поверхностей на этапе формообразования.

Метод Гартмана Для оптического контроля было бы желательно использовать экспресс методы, обеспечивающие точную количественную информацию обо всем исследуемом фронте волны. К сожалению, большинство количественных методов весьма трудоемки. В связи с этим часто возникает необходимость альтернативы между быстрым качественным и квазиколичественным методами оценки волнового фронта.

Теоретически наиболее полную количественную информацию о волновом фронте можно получить интерферометрическим методом. Это объясняется тем, что волновой фронт может быть в принципе оценен с интервалом /n, где -длина световой волны источника, а n-число проходов лучей через систему. На теоретически возможную точность интерферометрического метода часто отрицательно сказывается его чувствительность. Она снижается, например, если среда между контролируемой и эталонной системами турбулентная или быстро изменяется, или если контролируемая система колеблется относительно эталонной.

Влияние турбулентности воздуха обычно устраняют, контролируя систему в камере с частичным вакуумом; воздействие вибраций можно уменьшить до допустимого уровня применением противовибрационных устройств. Такие решения экономически неоправданны при контроле систем большого диаметра или с большим фокусным расстоянием. В этих случаях приходиться использовать теоретически менее точный метод, который заключается в контроле волнового фронта с помощью экрана или маски с отверстиями. Ниже обсуждаются оценки волнового фронта или зеркальной поверхности с использованием таких экранов.

Гартманограмма Основной принцип всех методов контроля с применением экрана заключается в том, что волновой фронт оценивается в ряде предварительно выбранных точек и результаты сравниваются с теоретическим значениями.

Методы базируются на законах геометрической оптики; идея заключается в том, что наличие у волнового фронта погрешностей в некоторой области приводит к фокусировке света в точке, отличающейся от теоретического фокуса, или к пересечению с осью в плоскости, не совпадающей с плоскостью для случая идеального фронта. В результате погрешности волнового фронта оценивают, определяя, в какой точке плоскости пересекается свет от некоторой его области и каково различие между ней и теоретической точкой пересечения луча идеальной волны.

Если волновой фронт оценивается несколькими лучами или пучками, перпендикулярными к нему, отклонение световых следов от их идеальных положений можно зафиксировать на некоторой регистрирующей плоскости.

Идеальный волновой фронт при этом не обязательно должен быть точно сферическим, но в принципе может иметь любую форму, так как интерес представляют лишь отклонение от него.

В 1904 году Гартман описал в публикации предложенный им метод, пригодный для точного количественного измерения различных аберраций, включая хроматические. Исходя из геометрического рассмотрения задачи, Гартман выделял диафрагмами пучки лучей, выходящих из системы, создающей в схеме контроля изображение тест-объекта "светящаяся точка" и, пользуясь внефокальными фотоснимками следов пучков лучей, определял точки пересечения отдельных лучей с оптической осью.

Рис.15.

Метод Гартмана, разработанный первоначально для измерения аберраций объективов, в последующие годы нашел эффективное применение при исследованиях качества крупногабаритных астрономических зеркал.

В выходной зрачок устанавливается диафрагма Гартманна, непрозрачная заслонка с серией отверстий.

Диафрагма пропускает отдельные пучки лучей исходя из искажения волнового фронта, затем выполняется регистрация и исследование направления хода лучей.

На каждой из пластинок регистрируется гартманограмма, которой соответствуют световые пятнышки, то есть следы пучков лучей, которые пересеклись со световым слоем.

Если волновой фронт деформации не имеет, расположение пятен гартманограммы соответствует расположению отверстий на диафрагме. Если имеется деформация волнового фронта, такая как на рис.15, то крайние пятна на 1-ой пластине сгруппируются на краю, а на 2-ой они сдвинутся к центру. Если изменить расстояние между пятнами, и если известно расстояние до пластин, из подобия треугольников можно определить точки схождения лучей и пересечения ими оптической оси.

Непрозрачный экран с отверстиями (названный диафрагмой Гартмана) (рис.15) устанавливается в зрачке исследуемого объектива; отверстия выполняются круглыми, оптимальный их диаметр выбирается из соотношения d = 0,005 - 0,0025 f' ; где f' - фокус исследуемой системы или расстояние отзрачка до точки схождения лучей. Далее на фотопластинках (гартманограммах) измеряют координаты следов пучков лучей (пятен).

Рис.Пусть (рис.16) :

d - расстояние между предфокальным и зафокальным положениями фотопластинок;

a - расстояние между следом оптической оси и следом данного луча (пятном) на предфокальной фотопластине A ;

b - соответствующее расстояние на зафокальной фотопластинке.

Тогда, в упрощенном рассмотрении, расстояние от A до точки I пересечения данного луча с осью может быть найдено из выражения:

a x = d a + b.

Достоинства метода:

1. количественные измерения аберраций и деформации волнового фронта.

2. метод прост (используется точечный источник света, диафрагма и две фотопластинки) 3. метод позволяет исследовать параметры оптической системы прибора непосредственно по наблюдаемому объекту, то есть в рабочем положении.

Недостатки метода:

1. Отсутствие наглядности (необходимо измерение координат с точностью поряка до 1 мкм; для чего применяется двумерная измерительная машина, например “Ascorecord”);

2. Фундаментальным недостатком является пространственная дискретность, так как метод построен на выделении из общего волнового фронта отдельных пучков лучей. Есть пространственный предел интервала, с которым можно расположить отверстия. Имеем ограниченную информацию об исследуемой деформации волнового фронта; информация о мелкоструктурных деформациях поверхности отсутствует.

3. Виброчувствительность: если элементы схемы вибрируют, то будет вибрировать и пятно рассеяния, следовательно, и каждый пучок лучей, что приводит как дополнительной нерезкости пятна гартманограммы и снижает точность измерения. Если имеются флуктуации волнового фронта, то пятнышки будут вибрировать случайным образом, следовательно, также снижается точность измерения Интерферограмма Начало ХХ века ознаменовалось развитием методов бесконтактной интерферометрии. В 1918 году Твайман [5] сообщил о методе интерферометрии аберраций объективов и ошибок оптических поверхностей.

Суть состояла в сравнении плоского опорного волнового фронта с фронтом от исследуемой системы или поверхности, форма которого приведена к плоской для случая отсутствия ошибок. Таким образом проблема исследования оптической системы ставится как задача непосредственного выявления и измерения деформаций, претерпеваемых поверхностью волнового фронта. Интерферометрия позволяет, при точно сфокусированном интерферометре, получить интерференционную картину, подобную топографической карте профиля ошибок исследуемой волновой поверхности, где горизонтали (изолинии уровня) представлены в виде полос с интервалом, кратным длине световой волны.

Схема интерферометра Тваймана показана на рис.17.

Рис.17. Интерферометр Тваймана для исследования плоских оптических поверхностей.

При поперечной расфокусировке интерферометра, предложенного Твайманом, возникает система полос, форма каждой из которых соответствует профилю ошибок волнового фронта в данном сечении зрачка.

Твайман предложил на основании сведений о форме волнового фронта рассчитывать интенсивность светового поля, заложив таким образом основу косвенного метода экспериментального исследования качества оптической системы.

ЧУВСТВИТЕЛЬНОСТЬ И ТОЧНОСТЬ ОПТИЧЕСКИХ МЕТОДОВ ИЗМЕРЕНИЯ РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ И ЧУВСТВИТЕЛЬНОСТЬ ПОПЕРЕЧНЫХ И ПРОДОЛЬНЫХ НАВОДОК ОТСЧЕТНЫХ ТРУБ И МИКРОСКОПОВ В приборах, использующих оптико - измерительное изображение первого рода, одним из основных узлов является эрительная труба или микроскоп. В процессе измерения перекрестие прибора (трубы или микроскопа) совмещается с изображением объектов в поперечном направлении путем поперечных смещений или поворотов (поперечные наводки), или требуется установить перекрестье прибора и изображение объекта в одной плоскости, т.е. сфокусировать на одновременную резкость обоих изображений - при этом производится продольная наводка прибора. Перекрестье при продольных наводках в измерительных приборах необходимо также для фиксации плоскости аккомодации глаза, чтобы аккомодация не вносила неопределенность в отсчеты.

Точность производимых наводок будет зависеть от качества оптического изображения,то есть его структуры, которая в идеальном приборе определяется дифракционные явлениями, а в реальном, кроме того, еще и величиной остаточных аберраций и ошибок. В результате оптическое изображение всегда более или менее нерезко.

Итак, структура оптического изображения определяет качество оптического измерительного прибора и его важнейшие метрологические характеристики - чувствительность и точность. Структура того оптического изображения, на которое выполняются оптические измерительные наводки, зависит от вида объекта, дифракционных явлений в процессе образования оптического изображения и аберраций оптической системы. Заметим, что с развитием современных технологий создаются возможности преобразования в заданном направлении первичного, то есть созданного прибором, оптического изображения. В последующих разделах автор рассчитывает показать применение средств такого рода для повышения точности и диапазона измерений и чувствительности оптического контроля сразу в десятки раз.

Оптические системы, применяемые в оптических измерительных приборах, имеют качество изображения, обусловленное, в основном, дифракцией. Поэтому классическая теория чувствительности и точности оптических измерительных наводок основана на анализе дифракционного распределения световой энергии в зоне оптического изображения.

Чувствительность идеального измерительного прибора ограничивается геометрическими параметрами дифракционного изображения объекта. Зная, от чего зависит размер изображения, можно сконструировать или правильно выбрать при измерении прибор, обладающий заданной точностью.

Рис.Рассмотрим дифракционное изображение точки (рис.18).

Pages:     | 1 || 3 |






















© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.