WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 6 |
Л.А.Губанова ОПТИЧЕСКИЕ ПОКРЫТИЯ Санкт-Петербург 2003 СОДЕРЖАНИЕ ВВЕДЕНИЕ 3 1 Лабораторная работа №1 Определение условий изготовления просветляющих покрытий осаждением плёнкообразующих веществ в вакууме 6 2 Лабораторная работа №2 Исследование металлодиэлектрических зеркал 17 3 Лабораторная работа №3 Изготовление и исследование характеристик узкополосных диэлектрических фильтров 25 4 Лабораторная работа №4 Исследование факторов, влияющих на характеристики спектроделителей 33 5 Лабораторная работа №5 Исследование влияния условий осаждения металлических слоёв на характеристики нейтральных фильтров на основе титана 52 6 Заключение 59 7 Приложение 61 Введение Внедрение оптических приборов и методов исследования в различные области науки и техники приводит к необходимости создания многослойных диэлектрических, металлодиэлектрических систем не только с расширяющимися требованиями к их свойствам, но и возможному их сочетанию. Это в первую очередь оптические, физико-механические, химические и другие свойства. Из оптических свойств следует упомянуть непрерывно расширяющей спектральный диапазон работы приборов, ужесточение требований к лучевой стойкости и прочности покрытий, сочетание возможности отражения (пропускания) и формирования волнового фронта отражённого (прошедшего) излучения. В некоторых случаях требуется работа покрытия со сходящимися или расходящимися пучками, т.е.

ужесточаются требования к их поляризационным свойствам. Поэтому разумно рассмотреть отдельные типы покрытий: просветляющие, (антиотражающе), зеркальные, свето- и спектроделительные, фильтрующие и поляризующие. Особой задачей, связанной со свойствами оптических материалов является осаждение покрытий на нестойких стёклах, кристаллах и полимерах.

Плёнки, нанесённые на преломляющие и отражающие грани оптических элементов позволяют формировать требуемые, разнообразные спектральные кривые, которые могут быть получены благодаря уникальным свойствам тонкоплёночных систем. Незначительная масса и относительная простота реализации (например, путём термического или электронно-лучевого испарения вещества в вакууме) позволяют широко применять интерференционные покрытия.

Просветляющие покрытия. Основная, почти классическая задача, просветляющих покрытий - увеличение спектрального диапазона и уменьшение остаточного отражения. Решение её при создании покрытий, работающих в широком спектральном диапазоне, включающем ультрафиолетовую, видимую и ближнюю инфракрасную часть спектра, осложняется тем, что оно существенно зависит от показателя преломления просветляемого материала. Показатель преломления просветляемых материалов лежит в интервале от 1,35 до 2,20.

кроме того набор стабильных, химически устойчивых, стойких к воздействию внешней атмосферы плёнкообразующих материалов невелик. Наибольшие сложности возникают при создании антиотражающих покрытий на материалах с малым показателем преломления. Однако, при использовании современных методов синтеза удаётся создавать конструкции, обеспечивающие заданные требования. Такие конструкции содержат слои, толщина которых не превышает нескольких нанометров, что вызывает значительные технологические сложности при их реализации, связанные как с контролем толщины слоёв в процессе их изготовления, так и со стабильностью параметров плёнок во времени. Это требует создания новых методов контроля толщины в процессе осаждения и исследование изменения свойств этих слоёв в процессе эксплуатации. Не меньший интерес в последнее время предъявляется к покрытиям, работающим в области вакуумного ультрафиолета. Создание таких покрытий в настоящее время сдерживается из-за отсутствия знаний о показателях преломления плёнкообразующих материалов, прозрачных в этой области спектра и приборов, позволяющих аттестовать эти материалы с достаточной точностью.

Особый интерес в последние годы проявляется к просветляющим покрытиям с переменным по толщине показателем преломления. Хотя свойства таких покрытий известно очень давно их экспериментальная реализация к настоящему времени почти отсутствует. В последнее время, в связи с экспериментальными исследованиями, посвящёнными одновременному испарению двух и более плёнкообразующих материалов в вакууме, появляется надежда на создание таких покрытий.

Свето- и спектроделительные покрытия. Для спектроделительных покрытий, особенно применяемых в оптоэлектронике и оптической связи, основная проблема заключается в уменьшении спектрального диапазона зоны, в которой коэффициент отражения или пропускания меняется быстро (крутизна спектральной характеристики, определяемая как dT/d или dR/d должна иметь максимальное значение в этом диапазоне). Зоны прозрачности, подавления и контрастность, определяемая как отношение максимального и минимального пропускания, должны иметь фиксированное значение, которое определяется техническим заданием. Основная сложность, возникающая при конструировании таких покрытий, заключается в обеспечении максимального значения dT/d (dR/d). Классический путь её преодоления - использование систем, состоящих из большого числа четвертьволновых слоёв с малой разницей в показателях преломления плёнкообразующих материалов. Однако при этом зона максимального отражения уменьшается пропорционально разнице в показателях преломления. Аналогичный результата может быть достигнут при использовании материалов с большой разницей показателей преломления плёнкообразующих материалов при меньшем числе слоёв, что не всегда возможно в ультрафиолетовой и видимой областях спектра из-за отсутствия таковых. При решении этой задачи необходимо искать компромиссный вариант, позволяющий при разумном количестве слоёв достичь заданной величины крутизны. Этот компромисс определяется свойствами плёнкообразующих материалов (собственные напряжения и коэффициент термического расширения плёнок) и материала подложки.



Зеркальные покрытия. Создание систем с максимальным коэффициентом отражения как на кратных длинах, так и некратных целому числу длинах волн и расширение спектрального диапазона, захватывающего спектральный диапазон от ультрафиолетовой до ближней ИК-области спектра, создание узкополосных зеркал- зеркал с минимальной шириной области максимального отражения является актуальной задачей. Разработка конструкции таких зеркал в принципе может быть решена с помощью современных методов синтеза многослойных диэлектрических систем.

Увеличение коэффициента отражения до величины, максимально приближенной к ста процентам, значительно увеличивает общую толщину диэлектрической системы. Это увеличение общей толщины приводит к тому, что система начинает разрушаться под действием механических напряжений, возникающих в слоях. Возможным выходом из этой ситуации является подбор пар слоёв взаимно компенсирующих как собственные, так и термические напряжения. При создании широкополосных систем перспективным является использование металлодиэлектрических систем. Подобный подход к конструированию широкополосных отражателей может быть использован для создания лазерных систем если напряжённость электрического поля световой волны, доходящих до металлического слоя уменьшается на один- два порядка. Особый интерес представляют системы, в состав которых входят слои с заданным распределением показателя преломления по толщине. Такие системы не только исключают границы раздела между слоями, изготовленными из различных материалов, что значительно увеличивает механическую прочность и лучевую стойкость покрытия, но и позволяют реализовать узкополосные системы, работающие как на кратных, так и не кратных длинах волн.

Поляризующие покрытия. В ряде современных приборов используется излучение как когерентных, так и некогерентных источников с определённым состоянием поляризации, что выдвигает дополнительные требования к поляризации отражённого и прошедшего потоков. Если для лазерных источников расходимость излучения мала, то для ряда других источников расходимость может достигать величины нескольких десятков градусов. Для этих источников не только велика расходимость, но и достаточно велик спектральный диапазон излучения. Это существенно ужесточает требования к конструкции многослойных систем, отражающих или пропускающих излучение с произвольным, наперёд заданным состоянием поляризации, расходимости и спектральным диапазоном. Воспроизводимость спектральных характеристик таких покрытий определяется точностью контроля и стабильностью режимов осаждения.

Основная сложность, которая возникает при изготовлении перечисленных выше покрытий, заключается в нестабильности показателей преломления слоёв, входящих в состав диэлектрических и металлодиэлектрических систем, а также в недостаточной точности контроля толщины слоёв в процессе осаждения.

Особый тип покрытий составляют покрытия с переменным по поверхности элемента коэффициентом отражения или пропускания (топологические покрытия). Одной из областей их использования является лазерная техника, в которой они могут применяться как элементы резонаторов лазеров, формирующих излучение с узкой диаграммой направленности.

Конструкция таких систем (показатели преломления, оптические толщины слоёв, распределение толщин по поверхности оптического элемента) определяется требованиями к форме волнового фронта отражённого или прошедшего излучения и величиной максимального и минимального коэффициентов отражения. Основная сложность при изготовлении таких покрытий состоит в воспроизведении расчетного распределения толщин слоёв по поверхности элемента и их контроле в процессе осаждения, что требует проведения соответствующих исследований. Особый интерес здесь представляет исследование оптических параметров плёнок с большим градиентом толщины, которая меняется от нуля до четверти длины волны, во времени.

Наибольшее распространение в настоящее время находят просветляющие системы, часто этот вид покрытий выполняет помимо своей основной задачи- снижение коэффициента отражения на границе раздела двух сред с различными показателями преломления, решает и проблему, связанную с защитой неустойчивого (налётоопасного, пятнаемого) стекла от влияния окружающей среды. Применение просветляющих покрытий позволяет снизить коэффициент отражения на границе стекло –воздух от 4-12 % до 0,01% на одной длине волны до 0,5% в широком спектральном диапазоне. что позволяет увеличить пропускание оптической системы, состоящей из 8-элементов увеличить (40-50)%. Конструкции просветляющих покрытий, разработанные для лазерных систем позволяют обеспечить пропускание оптический детали более 99,8%.

Это и понятно, так как многослойные тонкопленочные покрытия, являющиеся непременным элементом оптических систем, обладают такими интересными и полезными свойствами, как способность формировать Rens 2 энергетические (амплитудные) - R = r, T = t и фазовые = arg r, n = argt характеристики отраженного и прошедшего излучения R,r,T,t - энергетические и амплитудные коэффициенты отражения и пропускания многослойной системы, - разность фаз между отраженной и падающей и между прошедшей и падающей на многослойную систему волнами.





Поскольку эти характеристики являются функциями многих переменных:

показателей преломления - nj, оптических толщин - njdj, входящих в систему слоев, показателей преломления обрамляющих сред - n0,, ns, длины волны -, состояния поляризации падающего излучения; угла падения излучения на систему слоев - 0, имеется потенциальная возможность, меняя значения одной или нескольких переменных в широких пределах изменять свойства систем.

В последние годы большинство исследований посвящено поиску и исследованию многослойных тонкопленочных систем, формирующих энергетические характеристики излучения. Результатом их явилась разработка многих типов узкоспециализированных и механически прочных тонкопленочных покрытий (зеркальных, просветляющих, светоделительных, фильтрующих и т.д.), предназначенных для работы в параллельных и квазипараллельных пучках. Для их нормальной работы необходимо постоянство толщин и углов падения излучения во всех зонах поверхности детали.

Допустимые вариации толщин слоев таких покрытий по поверхности детали определяются их функциональным назначением. Так, например, для формирования качественных спектральных характеристик пропускания узкополосных интерференционных фильтров типа интерферометра ФабриПеро вариация толщины слоев по поверхности подложки не должна превышать 10-4510-3. Для просветляющих, зеркальных, светоделительных покрытий эти вариации больше, однако и здесь слишком большой разброс толщины слоев в различных зонах подложки не позволит реализовать расчетные спектральные характеристики.

При работе в сходящихся (расходящихся) световых пучках свойства этих систем существенно изменяются, если только форма поверхности подложки, на которую нанесено покрытие, не совпадает с формой падающего волнового фронта.

Одновременное формирование энергетических и фазовых (волнового фронта отраженного или прошедшего излучения) характеристик многослойными тонкопленочными покрытиями исследовано значительно меньше, что объясняется теоретическими и экспериментальными трудностями в решении этой задачи.

В общем виде задача одновременного формирования заданных энергетических и фазовых характеристик отраженного или прошедшего излучения с помощью многослойных тонкопленочных систем может быть сформулирована следующим образом: необходимо отыскать многослойную систему, осаждаемую на одну или несколько поверхностей оптической детали или деталей, которая имеет не только заданные спектральные энергетические характеристики: отражение -R, пропускание - Т по поверхности детали, но и формирует заданный волновой фронт отраженного или прошедшего излучения при известной форме фронта падающего излучения. Для ее решения необходимо применение покрытий, толщины слоев которых имеют заданное распределение по поверхности оптической детали. Естественно, изменение толщины покрытия по поверхности детали приводит и к формированию фронта волны, которое должно учитываться при аберрационном расчете оптического элемента. Исключение составляют оптические поверхности, форма которых совпадает с формой фронта падающей волны. В этом случае покрытие должно иметь толщину постоянную по поверхности подложки. При этом следует отметить, что имеющиеся к настоящему времени способы управления профилем осаждаемых покрытий (например, при помощи масок-экранов) не являются удовлетворительными по воспроизводимости, точности и производительности, что делает необходимым поиск других, более эффективных способов получения слоев с заданными геометрическими свойствами. Многослойные диэлектрические системы или отдельные диэлектрические и металлические слои, у которых толщина по поверхности детали меняется по заданному закону, могут быть использованы в качестве объектов исследования. Их использование позволяет исключить влияние технологических факторов, характеризующих условия осаждения, таких как давление и состав остаточных газов, скорость испарения пленкообразующего материала, материал подложки на оптические постоянные слоев, поскольку в интересующем нас интервале толщин (30100 нм) они от толщины не зависят или зависят очень слабо.

Лабораторная работа № ОПРЕДЕЛЕНИЕ УСЛОВИЙ ИЗГОТОВЛЕНИЯ ПРОСВЕТЛЯЮЩИХ ПОКРЫТИЙ ОСАЖДЕНИЕМ ПЛЕНКООБРАЗУЮЩИХ ВЕЩЕСТВ В ВАКУУМЕ Цель работы – изготовление просветляющих покрытий методом термического испарения и исследование факторов, влияющих на отклонение спектральной зависимости остаточного отражения просветленной поверхности от расчетной. Исследование отражательной способности покрытий в видимой области спектра. Составление блок-схемы технологического процесса изготовления просветляющего покрытия.

Теоретическая часть.

Просветление поверхностей элементов оптических систем используют по двум причинам. Во-первых, если оптическая система состоит из элементов с высокими показателями преломления или если количество элементов велико, потери света из-за отражения могут быть недопустимо большими. Во-вторых, в плоскость изображения попадает свет, претерпевший многократное отражение от поверхностей элементов, что приводит к уменьшению контрастности и четкости изображения.

Для увеличения пропускания оптических деталей на их преломляющие поверхности наносятся просветляющие покрытия, которые уменьшают коэффициент отражения преломляющих поверхностей до 0,001 в одной или нескольких длинах волн и до 0,008 в широком спектральном диапазоне.

Просветляющие оптические покрытия получают либо осаждением из растворов пленкообразующих соединений, либо осаждением в вакууме.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 6 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.