WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 20 |
УДК 530.1 + 007 ББК 32.81 Ф82 А.Л.Фрадков. КИБЕРНЕТИЧЕСКАЯ ФИЗИКА: ПРИНЦИПЫ ИПРИМЕРЫ. СПб.: Наука, 2003. – 208 с., 47 ил.

ISBN 5-02-025028-7 Рассмотрены основные положения кибернетической физики – новой научной области, направленной на исследование физических систем кибернетическими методами. Изложены предмет и методология кибернетической физики. Представлены результаты, устанавливающие фундаментальные закономерности преобразования траекторий консервативных и диссипативных систем при помощи обратных связей. Дается обзор применений обратной связи для управления синхронизацией, хаосом, колебаниями в распределенных системах. Описан подход к построению моделей динамики физических систем на основе методов теории управления (принципа скоростного градиента). Описанные понятия и результаты иллюстрируются примерами новых подходов к классическим задачам о маятнике Капицы, о выбросе из потенциальной ямы, о синхронизации осцилляторов, к задачам об управлении химической реакцией с фазовым переходом и о диссоциации двухатомных молекул.

Книга предназначена для студентов, аспирантов, преподавателей, инженеров и научных работников, интересующихся вопросами на стыке физики, теории управления и теории систем.

Р е ц е н з е н т: д.ф.-м.н., проф. И.И.Блехман ISBN 5-02-025028-7 © А.Л. Фрадков, 2003 г.

2 ОГЛАВЛЕНИЕ 1 ФИЗИКА И КИБЕРНЕТИКА 10 1.1 Немного о прошлом.................... 10 1.2 Управление хаосом..................... 11 1.3 Управление молекулярными и квантовыми системами. 14 1.4 Вид ы управления...................... 15 1.5 Кибернетическая физика и теория открытых систем.. 17 2 ПРЕДМЕТ И МЕТОДОЛОГИЯ КИБЕРНЕТИЧЕСКОЙ ФИЗИКИ 20 2.1 Мод ели объектов управления............... 20 2.2 Цели управления...................... 24 2.3 Алгоритмы управления.................. 31 2.4 Методы построения алгоритмов управления...... 2.4.1 Град иентный метод................ 2.4.2 Метод скоростного градиента.......... 2.5 Результаты: законы кибернетической физики...... 3 УПРАВЛЕНИЕ КОНСЕРВАТИВНЫМИ СИСТЕМАМИ 3.1 Управление энергией гамильтоновых систем...... 3.1.1 Постановка зад ачи................. 3.1.2 Алгоритм управления............... 3.1.3 Условия достижения цели управления...... 3.2 Свойство раскачиваемости................ 3.3 Управление первыми интегралами............ 4 УПРАВЛЕНИЕ ДИССИПАТИВНЫМИ СИСТЕМАМИ 4.1 Анализ возбуд имости систем с д иссипацией...... 4.1.1 Пассивность и д иссипативность......... 4.1.2 Инд екс возбуд имости............... 4.2 Резонанс с обратной связью............... 4.3 Индекс возбудимости маятниковых систем....... 5 УПРАВЛЕНИЕ СИНХРОНИЗАЦИЕЙ 5.1 Опред еления синхронизации............... 5.1.1 Кинематическое опред еление........... 5.1.2 Вид ы синхронизации............... 5.1.3 Динамическое опред еление............ 5.2 Синтез управления синхронизацией........... 5.3 Ад аптивная синхронизация................ 5.3.1 Постановка зад ачи................. 5.3.2 Адаптивная синхронизация двух подсистем.. 5.3.3 Условия достижения цели синхронизации... 5.3.4 Синхронизация и адаптивные наблюдатели... 5.4 Управление синхронизацией двух осцилляторов.... 6 УПРАВЛЕНИЕ ХАОСОМ 6.1 Что такое «д етерминированный хаос»......... 6.2 Управление без обратной связи.............. 6.3 Метод линеаризации отображения Пуанкаре (OGY-метод )........................ 6.4 Метод обратной связи с запаздыванием (метод Пирагаса)...................... 6.5 Методы линейного и нелинейного управления..... 7 УПРАВЛЕНИЕ ВЗАИМОСВЯЗАННЫМИ И РАСПРЕДЕЛЕННЫМИ СИСТЕМАМИ 7.1 Задачи и методы управления в распределенных системах.......................... 7.2 Управление энергией в моделях синус–Гордона и Френкеля–Конторовой................... 7.3 Управление волновым движением в цепочке маятников 8 ЗАКОНЫ УПРАВЛЕНИЯ И ЗАКОНЫ ДИНАМИКИ ФИЗИЧЕСКИХ СИСТЕМ 8.1 Вариационные принципы. Принцип скоростного град иента.......................... 8.2 Примеры скоростно-градиентных законов динамики.. 8.3 Соотношения Онсагера.................. 8.4 Динамика и цель...................... 9 ПРИМЕРЫ 9.1 Управляемый маятник Капицы.............. 9.2 Задача о выбросе из потенциальной ямы........ 9.3 Управление химической реакцией с фазовым переходом 9.3.1 Постановка зад ачи................. 9.3.2 Алгоритм адаптивного управления....... 9.3.3 Результаты мод елирования............ 9.4 Управление диссоциацией двухатомных молекул.... 9.4.1 Лазерное управление молекулярной динамикой 9.4.2 Синтез алгоритмов управления диссоциацией. 9.4.3 Результаты моделирования при классическом описании молекул................. 9.4.4 Сравнение классического и квантово-механического под ход ов...................... 9.5 Обратная связь в спектроскопии............. 10 ЗАКЛЮЧЕНИЕ. НЕМНОГО О БУДУЩЕМ ЛИТЕРАТУРА Простите за дерзость, что я этой темы касаюсь, Простите за трусость, что я ее раньше не трогал.



А. Вознесенский ПРЕДИСЛОВИЕ В книге излагаются некоторые идеи и результаты, относящиеся к области кибернетической физики — науки об исследовании физических систем кибернетическими методами. Хотя отдельные публикации в физических журналах, использующие идеи теории управления, появлялись достаточно давно, самостоятельный раздел науки на стыке физики и теории управления начал формироваться лишь в 1990-х годах в связи с бурным ростом таких направлений как управление хаосом и управление квантовыми системами, число публикаций в которых достигло нескольких тысяч.

Впервые делается попытка представить предмет и методологию кибернетической физики, а также решения некоторых ее задач с единых позиций. Основные результаты изложены для двух важнейших классов физических систем: консервативных и диссипативных, для описания моделей которых используется гамильтонов формализм, а для решения может быть применен предложенный ранее автором метод скоростного градиента. Дается обзор применений обратной связи для управления синхронизацией, управления хаосом, управления колебаниями в распределенных системах. Для перечисленных задач демонстрируются возможности применения общих результатов и устанавливаются границы преобразования свойств систем при помощи обратной связи. Представлен подход к применению принципа скоростного градиента для построения моделей физических систем.

Описанные понятия и результаты иллюстрируются примерами, содержащими новые подходы к хорошо известным задачам о маятнике Капицы, о выбросе из потенциальной ямы, о синхронизации осцилляторов, об управлении химической реакцией с фазовым переходом, о диссоциации двухатомных молекул.

Книга рассчитана на междисциплинарную аудиторию; для ее чтения достаточно знания основных понятий линейной алгебры, математического анализа, дифференциальных уравнений. Трудность написания подобных книг состоит в том, что ориентация на широкий круг читателей неизбежно идет во вред глубине изложения. Одни места в книге, возможно, не понравятся физикам, другие – кибернетикам.

Автор, сам по образованию математик, не смог удержаться от включения в книгу строгих формулировок и доказательств нескольких основных результатов в наиболее простых вариантах. Для ряда более сложных и громоздких результатов даны ссылки на литературу.

Однако область, которой посвящена книга, еще достаточно молода и строгие решения многих задач отсутствуют. Поэтому в тексте много результатов компьютерных исследований и указаний на нерешенные задачи.

С другой стороны, для удобства читателей–физиков, по ходу изложения поясняются некоторые понятия теории управления. Разумеется, это не заменяет учебника по теории управления для физиков, который, увы, еще не написан. Поэтому на протяжении всей книги при необходимости даются ссылки на существующие учебники и монографии.

По мнению автора, кибернетическая физика как самостоятельный раздел науки с единым предметом и методологией уже сложилась. Настало время привлечь к новой области внимание научной общественности, прежде всего молодежи, что дало бы новый толчок киберфизическим исследованиям. Основания к уверенности в этом дают интерес и поддержка, выраженные при выступлениях с лекциями и докладами по материалам будущей книги как перед кибернетическими, так и перед физическими аудиториями в 1998-гг. в 28 университетах и научных центрах, в том числе в университетах Бохума, Вены, Дуйсбурга, Калифорнии (Сан-Диего), Киото, Кумамото, Линчепинга, Мельбурна, Москвы, Потсдама, Принстона, Санкт-Петербурга, Токио, Эйндховена, Южной Калифорнии;

в институтах проблем механики РАН (Москва), проблем управления РАН (Москва), Санта Фе (США), CESAME (Мексика), INRIA (Франция), SUPELEC (Франция), RIKEN (Япония); в Центре теоретической физики CNRS (Марсель). Автор благодарен коллегам за приглашения и за поддержку.

Замысел книги родился и развивался в ходе работы автора в лаборатории управления сложными системами Института проблем машиноведения РАН. Ряд исследований выполнен при поддержке РФФИ (проекты 99-01-00672, 02-01-00765), программы фундаментальных исследований Президиума РАН № 19 «Управление механическими системами» (проект 1.4. Управление колебаниями и хаосом в физико-технических системах), а также Совета по грантам Президента РФ для поддержки молодых ученых и ведущих научных школ (грант НШ-2257.2003.1). В книгу вошли некоторые тексты, подготовленные для публикации в Соросовском образовательном журнале по материалам Соросовских лекций в 1999—2000 гг.

Автор пользуется приятной возможностью выразить благодарность коллегам по совместным работам, идеи и результаты которых нашли отражение в книге, в том числе М.С. Ананьевскому, Б.Р. Андриевскому, И.И. Блехману, П.Ю. Гузенко, А.А. Ефимову, А.М. Кривцову, С.А. Кукушкину, Х. Наймейеру, А.В. Осипову, А.Ю. Погромскому, В.В. Шиегину, А.С. Ширяеву, а также признательность всем, поддержавшим эту работу, и прежде всего — Б.Р. Андриевскому, многолетняя дружба и сотрудничество с которым были всегда радостными и сделали возможным появление многих публикаций, И.И. Блехману, невероятное сочетание мудрости и увлеченности которого делали общение с ним таким притягательным, и своему дорогому учителю В.А. Якубовичу, открывшему ученикам необъятное кибернетическое пространство.





Автор будет признателен за любые конструктивные замечания и приглашает читателей к дискуссии в Интернете. Адрес легко найти поиском по фамилии автора или названию книги.

Санкт-Петербург, Александр Фрадков декабрь 2003 г.

1 ФИЗИКА И КИБЕРНЕТИКА 1.1 Немного о прошлом Энциклопедия определяет физику как науку о природе, изучающую простейшие и вместе с тем наиболее общие свойства материального мира. Возраст физики как науки исчисляется тысячелетиями, а ее история уходит корнями в античность: термин «физика», означающий в переводе с греческого природу, был введен в обиход Аристотелем. Кибернетика несравненно моложе и имеет признанную дату рождения: публикацию в 1948 г. первого издания книги американского математика Норберта Винера «Кибернетика» [21]. Н. Винер определял кибернетику как науку об управлении и связи в живом организме, машине и обществе. Мы будем понимать кибернетику как теорию управления в широком смысле, поскольку вопросы связи (передачи информации) в настоящее время принято относить к смежной области — информатике, получившей стремительное развитие в конце ХХ в.

Как физика, так и кибернетика бурно развивались в ХХ веке и, безусловно, внесли революционные изменения в естествознание. Тем не менее до недавних пор кибернетические термины редко появлялись на страницах ведущих физических журналов, а ее влияние на физические исследования было практически не ощутимо. И не удивительно, поскольку науки весьма непохожи: физика (в частности, механика) является классической описательной (descriptive) наукой, а кибернетика (теория управления) представляет собой, как отмечал Р. Брокетт, «в некотором смысле парадигму предписательных (prescriptive) наук» [110]. Это значит, что задача физики — исследовать и описывать системы, тогда как задача кибернетики — преобразовывать их при помощи управляющих воздействий для формирования предписанного поведения.

Справедливости ради следует сказать, что автоматические и автоматизированные системы измерений и управления давно и широко применяются в экспериментальных физических исследованиях, современный физический эксперимент немыслим без автоматики. Однако в экспериментальных исследованиях система управления обычно играет вспомогательную роль, обеспечивая поддержание заранее заданного режима эксперимента. При этом не возникает качественно нового взаимодействия физики и теории управления, когда при применении кибернетических методов обнаруживаются новые теоретические результаты и качественно новые физические эффекты.

Удивительно то, что ситуация коренным образом изменилась в 1990-х годах с началом бурного развития двух новых областей: «управление хаосом» и «управление квантовыми системами».

1.2 Управление хаосом Показательна история управления хаосом. До 1990 года в научных журналах работ в этой области почти не было. Однако в 1990 г.

появилась статья группы ученых из Мэрилендского университета, США, Э. Отта, Ч. Гребод жи и Дж. Йорке «Управление хаосом» [192]. Статья вызвала настоящий взрыв публикаций: по данным журнала Сайенс Сайтэйшн Индекс (Science Citation Index), к концу 1990-х годов по этой тематике публиковалось более чем 300 статей в год в рецензируемых журналах, а общее число публикаций перевалило за 3000 (рис.1.1, а). В статье Отта–Гребоджи–Йорке [192] был сделан вывод, что даже малое управление в виде обратной связи, приложенное к нелинейной (хаотически колеблющейся) системе, может коренным образом изменить ее динамику и свойства: – например, превратить хаотическое движение в периодическое. Работа [192] породила лавину публикаций, в которых иногда экспериментальным путем, а чаще путем компьютерного моделирования, демонстрировалось, как управление (с обратной связью или без нее) может влиять на поведение разнообразных реальных и модельных физических систем. Предложенный в [192] метод стали называть «методом OGY» по начальным буквам фамилий авторов, а число ссылок на работу [192] к 2002 г. превысило 1300. Большинство публикаций по этой Интересно, что за пять лет до работы [192] появились статьи [2, 3], в которых задача подавления хаоса в нелинейной системе подачей периодического управляющего воздействия была поставлена, а возможность ее решения продемонстрирована путем компьютерного моделирования на примере экологической системы. Еще раньше было обнаружено превращение хаотического процесса в системе Лоренца в периодический под действием гармонического возбуждения [33]. Однако, хотя статьи [2, 33] и были переведены и опубликованы на английском языке, лавины публикаций они, увы, не породили.

Рис. 1.1. Динамика публикаций в рецензируемых журналах по темам (а) «Управление хаосом»; (б) «Квантовое управление» (данные «Science Citation Index») теме печатается в физических журналах, а авторы большинства работ представляют физические факультеты и кафедры. Таким образом, новое направление с достаточным основанием можно отнести к сфере физики.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 20 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.