WWW.DISSERS.RU

    !


Pages:     | 1 |   ...   | 26 | 27 ||

[96] Babelon O., Viallet C.-M. Hamiltonian structures and Lax equations. Phys.

Lett. B., v. 237, 3, 4, 1990, p. 411416.

[97] Belokolos E. P., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B.

Algebro- geometric approach to nonlinear integrable equations. Springer, 1994.

[98] Blaschke W. Nicht-Euklidische Geometrie und Mechanik. I, II, III, Hamburger Mathematische Einrelschriften, 1942, Bd. 34, S. 4547.

[99] Bobenko A. I., Kuznetsov V. B. Lax representation and new formulae for the Goriachev Chaplygin top. J. Phys. A, 1988, V. 21, P. 19992006.

[100] Bogoyavlenskij O. I. On perturbation of the periodic Toda lattice.

Commun. Math. Phys., 1976, v. 51, 3, p. 201209.

[101] Bogoyavlenskij O. I. Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures. Comm. Math. Phys., 1996, v. 180, p. 529586.

[102] Bogoyavlenskij O. I. Theory of tensor invariants of integrable Hamiltonian systems. II. Theorem on symmetries and its applications. Comm. Math.

Phys., 1997, v. 184, p. 301365.

[103] Bolsinov A. V., Borisov A. V., Mamaev I. S. Lie Algebras in Vortex Dynamics and Celestial Mechanics IV. Classification of the algebra of n vortices on a plane. Solvable problems of vortex dynamics. Algebraization and reduction in a three-body problem. Reg. & Chaot. Dyn., 1999, v. 4, 1, p. 2350.

[104] Borisov A. V., Mamaev I. S. Generalization of the Goryachev Chaplygin Case. Reg. & Chaot. Dyn., 2002, v. 7, 1, p. 2130. ( . 2003 .) [105] Borisov A. V., Mamaev I. S. Some Comments to the Paper of Perelomov A. M. A note on geodesics on ellipsoid. Reg. & Chaot. Dyn., 2000, v. 5, 1, p. 9294.

[106] Bottema O., Beth H. J. E. Euler equations for the motion of a rigid body in n-dimensional space. Koninklijke Nederlandse akademie va Wetenschappen, Proceedings, 1951, v. 54, 1, p. 106108.

[107] Braden H. W. A completely integrable mechanical system. Lett. Math.

Phys., 1982, v. 6, p. 449452.

286 [108] Brouzet R. About the existence of recursion operator for completely integrable Hamiltonian systems near a Liouville torus. J. Math. Phys., 1993, v. 34, p. 13091313.

[109] Brun F. Rotation kring fix punkt. fversigt at Kongl. Svenska Vetenskaps Akad. Frhadl. Stokholm, 1893, v. 7, p. 455468.

[110] Caylley A. Sur quelques properties des determinant gauches. Journal fr die reine und angewandte Mathematik, 1846, Bd. XXXII, S. 119123.

[111] Chang Y. F., Tabor M., Weiss J. Analytic structure of the Henon Heilis Hamiltonian in integrable and nonintegrable regims. J. Math. Phys., v. 23, 1982, . 531538.

[112] Choodnovsky D. V., Choodnovsky G. V. Lett. Nuovo Cimento, 1978, v. 22, p. 47.

[113] Clebsch A. ber die Bewegung eines Krpers in einer Flssigkeit.

Math. Annalen, Bd. 3, 1871, S. 238262.

[114] Darboux G. Sur un problme de mcanique. Archives Neerlandaises (ii).

1901.

[115] Dorizzi B., Grammaticos B., Ramani A. A new class of integrable systems.

J. Math. Phys., 1983, 24(9), p. 22822288.

[116] Drach J. Sur lIntegration logique des equations de la Dynamique a deux variables. Compt. Rend., 1935, v. 200, p. 2226.

[117] Dragovi V., Gaji B. The Lagrange Li top on so(4)so(4) and geometry of the Prym varieties. math-ph/0201036, 2002.

[118] Dragovi V., Gaji B. An LA pair for the Appelrot system and a new integrable case for the Euler Poisson equation on so(4) so(4). mathph/9911047, 1999.

[119] Fairbanks L. Lax equation representation of certain completely integrable systems. Comp. Math., v. 68, 1988, p. 3140.

[120] Fedorov Yu. N. Integrable systems, Poisson pencils and hyperelliptic Lax pairs. Reg. & Chaot. Dyn., 2000, v. 5, 2, p. 171180.

[121] Fedorov Yu. N. Steklov Lyapunov type systems. (In prepare).

[122] Fedorov Yu. N., Kozlov V. V. A Memoir on Integrable Systems. Springer Monographs in Mathematics, (in press).

[123] Flaschka H., McLaughlin D. Canonically conjugate variables for the Korteweg de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys., 1976, v. 55, p. 438456.

[124] Fokas A. S., Lagerstrom P. A. Quadratic and cubic invariants in classical mechanics. J. Math. Anal. Appl., 1980, 74, P. 325341.

[125] Frahm W. ber gewisse Differentialgleichungen. Math. Annalen, 1875, Bd. 8, S. 3544.

[126] Haine L., Horozov E. A. Lax pair for Kowalewskis top. Physica D, v. 29, 1987, p. 173180.

[127] Hall L. S. Invariants in momenta for integrable Hamiltonians. Phys. Rev.

Lett., 1985, v. 54. 7, . 614615.

[128] Hall L. S. Lawrence Livermore preprint UCLR-87094.

[129] Henon M. Integrals of the Toda lattice. Phys. Rev., 1974, 9, p. 19211923.

[130] Henon M., Heiles C. The applicability of the third integral of motion;

some numerical experiments. Astron. Jour., 1964, v. 69, p. 73.

[131] Hietarinta J. New integrable Hamiltonians with transcendental invariants.

Phys. Rev. Lett., 1984, v. 52, 13, . 10571060.

[132] Hietarinta J. A search for integrable two-dimensional Hamiltonian systems with polynomial potential. Phys. Lett. 1983, v. 96A, 6, . 273278.

[133] Hietarinta J. Integrable families of Hnon Heiles-type Hamiltonians and a new duality. Phys. Rev. 1983, v. A28, 6, p. 36703672.

[134] Hietarinta J. Direct methods for the search of the second invariant. Phys.

Reports. 1987, v. 147, p. 87154.

[135] Holt C. R. Construction of new integrable Hamiltonians in two degrees of freedom. J. Math. Phys., 1982, 23(6), p. 10371046.

[136] Gaffet B. J. A completely integrable Hamiltonian motion on the surface of a sphere. J. Phys. A, 1998, v. 31, p. 15811596.

[137] Gaffet B. J. Spinning gas clouds without vorticity. J. Phys. A, 2000, v. 33, p. 39293946.

[138] Garnier R. Sur une classe de systemas differentiel abelien deduits theorie des equations lineaires. Rend. Circ. Matem. Palermo. 1919. 43, 4, . 155191.

[139] Glaser V., Grosser H., Martin A. Bound on the number of eigenvalues Schrdinger operator. Comm. Math. Phys. 1978, v. 59, p. 197212.

[140] Grammaticos ., Dorizzi ., Padjen R. Paileve property and integrals of motion for the Henon Heiles system. Phys. Lett. A. 1982, v. 89A, 3, p. 111113.

288 [141] Grammaticos ., Dorizzi ., Ramani A. Integrability of Hamiltonians with third- and fourth-degree polynomial potentials. J. Math. Phys., 1983, 24(9), p. 22892295.

[142] Grammaticos ., Dorizzi ., Ramani A. J. Math. Phys., 1984, 25, p. 1833.

[143] Greene J. Preprint La Jolla Institute LJI-TN-81-122; Y. F. Chang, J. M. Greene, M. Tabor, J. Weiss, Preprint La Jolla Institute LJI-R-81-152.

[144] Guillemin V., Sternberg S. On collective complete integrability according to the method of Thimm. Ergod. Th. & Dynam. Sys., 1983, v. 3, p. 219 230.

[145] Guillemin V., Sternberg S. Symplectic techniques in physics. Cambridge University Press, 1984.

[146] Gutzwiller M. The quantum mechanical Toda lattice. Comm. Math. Phys., 1980, v. 51, p. 347381. The quantum mechanical Toda lattice. II. Ann.

Phys., 1981, v. 133, p. 304331.

[147] Inosemtsev V. I. The finite Toda lattices. Commun. Math. Phys., 1989, v. 121, p. 629638.

[148] Ktter F. Die von Steklow und Liapunow entdeckten intergralen Flle der Bewegung eines starren Krpers in einer Flssigkeit. Sitzungsber.

Kniglich Preusischen Akad. Wiss. Berlin, Bd. 6, 1900, p. 7987.

[149] Ktter F. ber die Bewegung eines festen Krpers in einer Flssigkeit, I, II. J. Reine Angew. Math. Bd. 109, 1892, S. 5181, 89111.

[150] Knrrer H. Geodesics on quadrics and mechanical problem of C.Neumann.

J. Reine Angew. Math., 1982, v. 334, p. 6978.

[151] Komarov I. V. A generalization of the Kovalevskaya top. Phys. Lett., v. 123, 1987, 1, p. 1415.

[152] Komarov I. V., Kuznetsov V. B. Kowalewskis top on the Lie algebras o(4), e(3) and o(3, 1). J. Phys. A, 1990, v. 23, p. 841846.

[153] Kozlov V. V., Harin A. O. Keplers problem in constant curvature spaces.

Cel. Mech. and Dyn. Astron., v. 54, 1992, p. 393399.

[154] Kuznetsov V. B. Kowalevski top revisited. arXiv:nlin.SI/0110012 v. 1, 2001.

[155] Kuznetsov V. B. Separation of variables for the Dn type periodic Toda lattice. arXiv: solv-int/9701009, 1997.

[156] Kuznetsov V. B., Tsiganov A. V. A special case of Neumanns system and the Kowalewski Chaplygin Goryachev top. J. Phys. A, 1989, v. 22, p. L7379.

[157] Marshall I. D. The Kowalevski top: its r-matrix interpretation and bi-hamiltonian formulation. Comm. Math. Phys., 1998, v. 191, p. 723 734.

[158] Marshall I. D., Wojciechowski S. When is a Hamiltonian system separable J. Math. Phys., 1988, v. 29(6), p. 13381346.

[159] Moser J. Geometry of Quadrics and Spectral Theory, The Chern Symposium. Berkeley, June, 1979. . . : . . .-.:

, 1999, . 128181.

[160] Mumford D. Tata lectures on theta, Birkhaser, Boston, 1984. . .: . -. .: , 1988.

[161] Nambu Y. Generalized Hamiltonian dynamics. Phys. Rev. D, v. 7, 1973, 8, p. 24052412.

[162] Olver P. Canonical forms and integrability of bi-Hamiltonian systems.

Phys. Ltt. A, 1990, v. 148, 3, 4, p. 177187.

[163] Pedroni M. Bi-Hamiltonian aspects of the separability of the Neumann system. arXiv: nlin. SI/0202023, v. 2, 24 Jun 2002. . : . . . . , 2002, . 133, 3, . 475484.

[164] Perelomov A. M. A note on geodesics on ellipsoid. Reg. & Chaot. Dyn., 2000, v. 5, 1, p. 8994.

[165] Perelomov A. M., Ragnisco O., Wojciechowski S. Integrability of Two Interacting N-Dimensianal Rigid Bodies. Comm. Math. Phys., v. 102, 1986, p. 573583.

[166] Poincar H. Sur le forme nouvelle des equations de la mecanique.

C. R. Acad. Sci. Paris, v. 132, 1901, p. 369371. . . .-.: , 2001, . 7273.

[167] Poincar H. Sur la precession des corps deformables. Bull. Astr., v. 27, 1910, p. 321356. . .: . .

.-.: , 2001, . 74111.

[168] Ramani A., Dorizzi B., Grammaticos B. Painlev conjecture revisited.

Phys. Rev. Lett., 1982, v. 49, p. 1539.

[169] Ratiu T. Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Amer. J. Math., 1982, v. 103, 3, p. 409448.

[170] Reyman A. G., Semenov-Tian-Shansky M. A. Compatible Poisson structures for Lax equations: a r-matrix approach. Phys. Lett., v. 130, 1988, p. 456460.

290 [171] Reyman A. G., Semenov-Tian-Shansky M. A. A new integrable case of the motion of the 4-dimensional rigid body. Comm. Math. Phys., v. 105, 1986, p. 461472.

[172] Reyman A. G., Semenov-Tian-Shansky M. A. Lax representation with a spectral parameter for the Kowalewski top and its generalizations. Lett.

Math. Phys., v. 14, 1987, p. 5561.

[173] Roekaerts D., Schwarz F. Painleve analysis, Yoshidas theorems and direct methods in the search for integrable Hamiltonians. J. Phys. A. Math. Gen., v. 20, 1987, p. 127133.

[174] Rosochatius E. ber die Bewegung eines Punktes. Inaugural Dissertation, Univ. Gttingen, Berlin, 1877.

[175] Schottky F. ber das analytische Problem der Rotation eines starren Krpers in Raume von vier Dimensionen. Sitzungsberichte der Knigligh preussischen Academie der Wissenschaften zu Berlin, 1891, Bd. XIII, S. 227232.

[176] Sklyanin E. K. Boundary conditions for integrable quantum systems.

J. Phys. A, v. 21, 1988, p. 23752389.

[177] Sklyanin E. K. Separation of variables new trends. Progr. Theor. Phys.

Suppl., v. 118, p. 3561, 1995.

[178] Sokolov V. V. A generalized Kowalevski Hamiltonian and new integrable cases on e(3) and so(4). In Kowalevski property, ed. V. B. Kuznetsov, CRM Proceedings and Lecture Notes, AMS, p. 307315, 2002.

[179] Srivastava N., Kaufman C., Mller G., Weber R., Thomas H. Integrable and Nonintegrable Classical Spin Clasters. Z. Phys. B, Condensed Matter, v. 70, 1988, p. 251268.

[180] Stekloff V. A. Sur le mouvement dun corps solide ayant une cavite de forme ellipsoidale remple par un liquide incompressible en sur les variations des latitudes. Ann. de la fac. des Scien: de Toulouse, Ser. 3, v. 1, 1909.

[181] Tabor M., Weiss J. Analytic structure of the Lorenz system. Phys. Rev. A, v. 24, 1981, 4, p. 21572167.

[182] Thimm A. Integrable geodesic flows on homogeneous spaces. Ergod. Th.

& Dynam. Sys., 1981, v. 1, p. 495517.

[183] Tsiganov A. V. Lax representation for an integrable motion on the sphere with a cubic second invariant. Reg. & Chaot. Dyn., 1999, v. 4, 3, p. 2129.

[184] Tsiganov A. V. On the invariant separated variables. Reg. & Chaot. Dyn., v. 6(3), p. 307326, 2001.

[185] Tsiganov A. V. On the Kowalevski-Goryachev-Chaplygin gyrostat. J. Phys.

A, v. 35, p. 309318, 2002.

[186] Tsiganov A. V. On integrable deformation of the Poincare system. Reg. & Chaot. Dyn., 2002, v. 7, 3, p. 331337.

[187] Turiel F. G. Classification locale dun couple des formes symplctiques Poisson-compatible. C. R. Acad. Sci. Paris. Sr. I., 1989, v. 308, p. 575 578.

[188] Uhlenbeck K. Minimal 2-spheres and tori in Sk. Preprint, 1975.

[189] Vanhaecke P. Linearising two dimensional integrable systems and the construction of action-angle variables. Math. Z., v. 211, p. 265313, 1992.

[190] Vanhaecke P. Integrable systems in the realm of algebraic geometry.

Lecture Notes in Mathematics, v. 1638, Springer-Verlag, 1996.

[191] Veselov A. P. Two remarks about the connection of Jacobi and Neumann integrable systems. Math. Z. 1994, v. 216, p. 337345.

[192] Volterra V. Sur la theorie des variations des latitudes. Acta Math., v. 22, 1899, p. 201358.

[193] Wojciechowski S. Integrable one-particle potentials related to the Neumann system and the Jacobi problem of geodesic motion on an ellipsoid. Phys. Lett., v. 107A, 3, p. 106111.

[194] Yoshida H. Necessary condition for the existence of algebraic first integrals. Celest. Mech., v. 31, 4, 1983, . 363379. . 381399.

[195] Yoshida H. A criterion for the non-existence of an additional integral in hamiltonian system with a homogeneous potential. Physica 29D, 1987, . 128132.

LA- 147 144 LA- 92 Z- 70 66 () 65 31 69 69 20 60, 127 73, 105 59, r- 19, XY Z- 35 24, 109, - 35, - 52 22 20 65, 66 95 69 76 18, () 23, 37, 41, 20,

Pages:     | 1 |   ...   | 26 | 27 ||






















2011 www.dissers.ru -

, .
, , , , 1-2 .