WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 | 5 |   ...   | 27 |

1.2.1. Двухкомпонентная модель В классической двухкомпонентной модели масса тела человека (МТ) рассматривается как сумма двух составляющих: жировой массы тела (ЖМТ) и безжировой массы тела (БМТ)4:

МТ = ЖМТ + БМТ. (1.1) Под жировой массой тела понимается масса всех липидов в организме. Жировая масса тела представляет собой наиболее лабильную компоненту состава тела, её содержание может меняться в широких пределах. На рис. 1.4 показано нормальное соотношение для мужчин, при котором ЖМТ составляет около 15% массы тела. У больных ожирением этот показатель увеличен более чем вдвое.

В литературе на русском языке в качестве синонимов термина “безжировая масса тела” также используются понятия “обезжиренная масса” (Смирнова, 1965;

Лутовинова, Чтецов, 1969) и “масса тела, свободного от жира” (Бондаренко, Каплан, 1978).

Рис. 1.4. Классическая двухкомпонентная модель состава тела (Siri, 1961; Brozek et al., 1963). Масса тела представлена как сумма жировой и безжировой массы (ЖМТ и БМТ, соответственно) Согласно чаще используемой при изучении состава тела анатомической классификации, различают существенный жир, входящий в состав белково-липидного комплекса большинства клеток организма (например, фосфолипиды клеточных мембран), и несущественный жир (триглицериды) в жировых тканях.Существенный жир необходим для нормального метаболизма органов и тканей. У мужчин относительное содержание существенного жира ниже, чем у женщин. Считается, что относительное содержание существенного жира в организме весьма стабильно и составляет для разных людей от 2 до 5% безжировой массы тела. Однако имеющиеся немногочисленные оценки противоречивы [(Behnke et al., 1942, 1963; Keys, Brozek, 1953), см. также (Clarys et al., 1999; Fidanza, 2003)].

Несущественный жир образует основной запас метаболической энергии и выполняет функцию термоизоляции внутренних органов. Содержание несущественного жира увеличивается при избыточном и снижается при недостаточном питании. 15 кг несущественного жира обеспечивают двухмесячную потребность организма в энергии при её расходе 2000 ккал в сутки. Открытие в 1993 году гена ожирения и молекулярного фактора лептина, продуцируемого адипоцитами (основной тип клеток жировой ткани) и участвующего в регуляции энергетического гомеостаза, положило начало активному изучению жировой ткани как метаболически активного органа. Сегодня известно более десяти молекулярных факторов, секретируемых жировой тканью и регулируюОбщие сведения о липидах, включая краткий обзор биологических функций и химическую классификацию, можно найти, например, в работе Васьковский В.Е. Липиды // Соросовский образовательный журнал. 1997. № 3. C. 32–37.

http://journal.issep.rssi.ru/articles/pdf/9703_032.pdf щих функции эндокринной и иммунной системы. К ним относятся лептин, IL-6, фактор некроза опухолей и другие (Frhbeck et al., 2001).

Количество жировых тканей в организме может значительно отличаться у разных индивидов и, кроме того, испытывает колебания на индивидуальном уровне в течение жизни. Это может быть связано как с нормальными физиологическими изменениями в процессе роста и развития организма, так и с нарушениями метаболизма. Среднее процентное содержание жировых тканей в организме взрослых людей для различных популяций обычно составляет от 10% до 20–30% массы тела. Нижняя граница указанного диапазона характерна для населения африканских и азиатских стран с низким уровнем жизни, а верхняя — для населения промышленно развитых стран (Valentin, 2002).

Несущественный жир состоит из подкожного и внутреннего жира. Подкожный жир распределён относительно равномерно вдоль поверхности тела. Внутренний (висцеральный) жир сосредоточен, главным образом, в брюшной полости. Установлено, что риск развития сердечно-сосудистых и других заболеваний, связанных с избыточной массой тела, имеет более высокую корреляцию с содержанием внутреннего, а не подкожного, жира. Иногда используется понятие абдоминального жира, под которым понимается совокупность внутреннего и подкожного жира, локализованных в области живота.

Масса тела за исключением жира, т. е. липидов, имеет название безжировой массы тела (БМТ). Компонентами БМТ являются общая вода организма, мышечная масса, масса скелета и другие составляющие.

Существующие методы оценки состава тела в двухкомпонентной модели основаны на измерении одной из двух величин: плотности тела или содержания воды в организме. В первом случае предполагаются постоянными и известными плотности безжировой и жировой массы тела (ПБМТ и ПЖМТ, соответственно).

Пусть ПТ — плотность тела, V = МТ/ПТ — объём тела, VЖМТ = ЖМТ/ПЖМТ — объём жировой массы тела, а VБМТ = БМТ/ПБМТ — объём безжировой массы тела. Имеем тождество:

V = VЖМТ + VБМТ, (1.2) или МТ ЖМТ БМТ = +. (1.3) ПТ ПЖМТ ПБМТ Отсюда с учётом (1.1) получаем выражение для процентного содержания жира в организме (%ЖМТ=ЖМТ/МТ100):

ПЖМТ ПБМТ %ЖМТ = - 1 100. (1.4) ПБМТ - ПЖМТ ПТ При подстановке вместо ПЖМТ и ПБМТ конкретных числовых значений получаются различные формулы для %ЖМТ.

Для изучения состава тела у взрослых людей наиболее широко применяются формулы В. Сири6 и Й. Брожека7:

%ЖМТ = (495/ПТ) - 450 (Siri, 1961); (1.5) %ЖМТ = (497,1/ПТ) - 451,9 (Brozek, 1963). (1.6) Формула Сири соответствует значениям ПБМТ = 1,10 г/мл, ПЖМТ = 0,90 г/мл, а формула Брожека базируется на понятии условного человека с заданной плотностью и составом тела и не использует напрямую оценку ПБМТ. Плотность тела условного человека принимается равной 1,064 г/мл. В пределах значений плотности тела от 1,03 до 1,09 г/мл формулы Сири и Брожека дают высококоррелированные и практически совпадающие оценки %ЖМТ (различия не превышают 0,5–1%ЖМТ), однако в случае индивидов с выраженным истощением или ожирением разность оценок %ЖМТ на основе этих двух формул увеличивается, а более точной оказывается формула Брожека [цит. по: (Roche et al., 1996)].



Из формулы (1.4) следует, что для получения надёжной оценки %ЖМТ необходимо знать плотность безжировой массы тела с высокой точностью, так как в знаменателе первого сомножителя правой части (1.4) стоит разность двух близких величин: ПБМТ и ПЖМТ. Например, легко вычислить, что 1%-ная относительная погрешность задания плотности безжировой массы тела ПБМТ (что соответствует 0,011 г/мл) приводит к 3,5–4%-ной относительной ошибке определения %ЖМТ! Вильям Сири (1919–2004) — американский физиолог и биофизик. С 1943 по 1945 гг. принимал участие в Манхэттенском проекте. Впоследствии — ведущий специалист национальной лаборатории им. Беркли. Один из основоположников науки о составе тела. Известный альпинист. Участник и соруководитель первого успешного американского восхождения на Эверест.

Йозеф Брожек (1913–2004) — чешский и американский антрополог. Один из основоположников науки о составе тела. Некоторые его работы опубликованы на русском языке [см., например, (Брожек, 1960)].

Согласно немногочисленным анатомическим данным, стандартное отклонение плотности безжировой массы индивидов от среднепопуляционных значений составляет 0,01 г/мл (Bakker, Struikenkamp, 1977), что объясняется естественной вариацией состава и плотности БМТ. Поэтому желательно иметь специфические формулы двухкомпонентной модели состава тела для популяций, сравнительно однородных относительно признаков, влияющих на величину ПБМТ. С учётом этого были предло- В. Сирижены формулы для разных возрастных групп в зависимости от пола и этнической принадлежности. Формулы на основе измерения плотности тела, используемые для оценки состава тела у индивидов белой расы различного пола и возраста, приводятся в табл. 1.1, где также показаны средние значения плотности безжировой массы.

Примером метода изучения состава тела на основе оценки плотности тела является гидростатическая денситометрия (ГД). Для этого проводится измереЙ. Брожек ние веса тела в воде и в обычных условиях (п. 3.1). Ошибка определения ЖМТ на основе ГД при повторных измерениях, выполненных одним и тем же специалистом, составляет около 2,5%. До недавнего времени гидростатическая денситометрия считалась основным эталонным методом (“золотым стандартом”) определения состава тела в двухкомпонентной модели. К недостаткам ГД относятся большая длительность процедуры измерений (от 45 мин. до 1 часа), стационарность метода, а также относительно высокая стоимость оборудования. Необходимость полного погружения для измерения веса тела в воде снижает возможности применения метода у детей, а также у пожилых и больных людей.

Фотография предоставлена кабинетом архивных фотоизображений Национальной лаборатории им. Лоуренса Беркли, США. Публикуется с разрешения.

Таблица 1.1. Формулы для оценки %ЖМТ в зависимости от пола и возраста (Heyward, Stolarczyk, 1996) Возраст, лет Пол %ЖМТ ПБМТ, г/мл 7–12 м (5,30/ПТ) - 4,89 1,ж (5,35/ПТ) - 4,95 1,13–16 м (5,07/ПТ) - 4,64 1,ж (5,10/ПТ) - 4,66 1,17–19 м (4,99/ПТ) - 4,55 1,ж (5,05/ПТ) - 4,62 1,20–80 м (4,95/ПТ) - 4,50 1,ж (5,01/ПТ) - 4,57 1,Альтернативой гидростатической денситометрии является воздушная плетизмография (ВП) (п. 3.2). Измерения проводят в жёсткой герметичной кабине, заполненной обычным воздухом.

Современные устройства для обследования взрослых людей (BOD POD) и грудных детей (PEA POD), были разработаны компанией Life Measurement Instruments (США) в 1994 и 2002 году, соответственно. Длительность процедуры измерений составляет от 2-х до 5 мин. При проведении клинических испытаний устройства BOD POD был выявлен более низкий разброс результатов последовательных измерений по сравнению с методом ГД, а разность средних значений %ЖМТ на основе этих двух методов составила 0,3%. Перечисленное позволяет рассматривать ВП в качестве эталонного метода двухкомпонентной модели состава тела. Однако высокая стоимость устройства (около 35 тыс. долл.) затрудняет возможность широкого внедрения метода. В России аналогичных приборов пока нет. Более подробная характеристика методов изучения состава тела, основанных на оценке плотности тела, имеется в главе 3.

Другая возможность определения состава тела в двухкомпонентной модели связана с оценкой содержания воды в организме.

Общая вода организма (ОВО) — это наибольшая по массе составляющая безжировой массы тела. Процентное содержание воды в организме у детей и подростков увеличивается в ходе развития, стабильно у взрослых людей и снижается к старости (Ellis, Wong, 1998). По определению (см. стр. 19), содержание воды в жировой массе тела равно нулю.9 Эталонным методом измерения обОбсуждение различий между понятиями жировой массы тела и массы жировых тканей приводится на стр. 73.

щей воды организма (ОВО) считается метод изотопного разведения с использованием трития, дейтерия или H218O (п. 4.1). Оценка БМТ получается при предположении о постоянстве относительного содержания ОВО в БМТ: чаще всего используется значение ОВО/БМТ = 0,732 л/кг (Forbes et al., 1962). Жировая масса тела вычисляется затем как разность между массой тела и безжировой массой тела по формуле Н. Пейса и Э. Ратбун (Pace, Rathbun, 1945):





ЖМТ = МТ - БМТ = МТ - ОВО/0,732. (1.7) В отличие от методов ГД и ВП, метод изотопного разведения можно использовать в полевых условиях, однако в этом случае получаемые образцы физиологических жидкостей, как правило, отправляют в специальную лабораторию для последующего химического анализа, и таким образом вся процедура может занимать несколько дней. Другие недостатки связаны с воздействием на организм небольшой дозы радиации (в случае трития), а также с высокой стоимостью обследования (при использовании H218O).

Основным источником погрешности метода изотопного разведения является предположение о постоянстве относительного содержания воды в БМТ. Поэтому у индивидов с предполагаемыми нарушениями гидратации использовать метод не рекомендуется.

Для оценки содержания воды в организме также применяются биоэлектрические методы. Один из таких методов, имеющий название биоимпедансного анализа (п. 4.2), является оперативным и широко используется для определения состава тела в полевых условиях, а также в клинической и амбулаторной практике.

Рассмотренная двухкомпонентная модель (МТ = ЖМТ + БМТ) соответствует молекулярному уровню строения тела. Физиологическая интерпретация получаемых результатов в этом случае затруднена ввиду неоднородности состава липидов и безжировой массы. С учётом этого американский врач Альберт Бенке ввёл в употребление понятие тощей массы тела (lean body mass), равной сумме безжировой массы тела и массы существенного жира, и предложил рассматривать следующую двухкомпонентную модель состава тела (Behnke et al., 1942):

МТ = МНЖ + ТМТ, (1.8) где МНЖ — масса несущественного жира в организме, а ТМТ — тощая масса тела. Ввиду неопределённости, связанной с оценкой содержания существенного жира, понятие тощей массы оказалось мало пригодным для изучения состава тела и впоследствии нередко ошибочно использовалось в качестве синонима безжировой массы (fat-free mass). Для устранения возникшей путаницы в определениях в 1981 году на совместном заседании объединённой экспертной комиссии ВОЗ, ООН и Организации по вопросам питания и сельского хозяйства с участием известных специалистов по изучению состава тела было решено использовать понятие “тощая масса тела” в качестве эквивалента термина “безжировая масса тела” для обозначения массы тела без жира (Fidanza, 2003).

Двухкомпонентную модель состава тела можно использовать для характеристики групповых средних значений. Ввиду значительной вариации состава и плотности безжировой массы тела (БМТ) она мало пригодна для мониторинга изменений состава тела на индивидуальном уровне за исключением случаев предварительной диагностики и оценки эффективности лечения выраженного истощения или ожирения (Roche et al., 1996). В целях повышения точности оценки состава тела были предложены трёх- и четырёхкомпонентные модели, основанные на дополнительных измерениях одной или двух составляющих БМТ, соответственно.

1.2.2. Трёхкомпонентные модели На рис. 1.5 показаны две наиболее распространённые трёхкомпонентные модели состава тела. В одной из них (рис. 1.5, слева) безжировая масса тела представлена как сумма общей воды организма (ОВО) и сухой массы тела без жира (СМТБЖ):

МТ = ЖМТ + БМТ = ЖМТ + ОВО + СМТБЖ. (1.9) Имеем следующее тождество:

V = VЖМТ + VОВО + VСМТБЖ, (1.10) где, как и ранее, V — объём тела, VЖМТ — объём жировой массы, а VОВО и VСМТБЖ — объём ОВО и СМТБЖ, соответственно.

Перепишем это равенство в виде МТ ЖМТ ОВО СМТБЖ = + +, (1.11) ПТ ПЖМТ ПОВО ПСМТБЖ Рис. 1.5. Трёхкомпонентные модели состава тела. На диаграмме слева масса тела представлена в виде суммы жировой массы тела (ЖМТ), общей воды организма (ОВО) и сухой массы тела без жира (СМТБЖ), на диаграмме справа — как сумма жировой массы тела (ЖМТ), минеральной массы тела (ММТ) и безжировой фракции мягких тканей (БФМТ). Относительные размеры секторов соответствуют данным по условному человеку (см. табл. 1.2 на стр. 29 и приложение 3) где ПОВО — плотность ОВО, ПСМТБЖ — плотность СМТБЖ. Путём соответствующих преобразований получаем выражение для процентного содержания жира в организме:

1 ОВО/МТ СМТБЖ/МТ %ЖМТ = ПЖМТ - - 100. (1.12) ПТ ПОВО ПСМТБЖ Измеряемыми величинами здесь являются масса тела, плотность тела и общая вода организма (ОВО). Формулы трёхкомпонентной модели получаются, если задать конкретные значения ПЖМТ, ПОВО, ПСМТБЖ и зафиксировать соотношение ОВО/СМТБЖ.

Формула Сири трёхкомпонентной модели состава тела имеет следующий вид (Siri, 1961):

%ЖМТ = [2,118/ПТ - 0,78 (ОВО/МТ) - 1,354] 100, (1.13) где ПТ — плотность тела (г/мл), ОВО — общая вода организма (л), а МТ — масса тела (кг). Как и в двухкомпонентной модели, для измерения плотности тела обычно используются методы ГД и ВП, а для измерения ОВО — метод изотопного разведения.

Другая трёхкомпонентная модель состава тела имеет вид, показанный на рис. 1.5 справа:

МТ = ЖМТ + ММТ + БФМТ, (1.14) где ММТ — минеральная масса тела, а БФМТ — безжировая фракция мягких тканей (ср. с (1.9)). Соответствующая формула трёхкомпонентной модели для вычисления %ЖМТ, которая выводится аналогично (1.13), имеет следующий вид (Lohman, 1986):

%ЖМТ = [6,386/ПТ - 3,961 (ММТ/МТ) - 6,090] 100, (1.15) где плотность тела измеряется в граммах на миллилитр, а масса тела и минеральная масса тела — в килограммах. Для определения минеральной массы тела обычно применяются радиоизотопные или рентгеновские методы (п. 4.6).

Pages:     | 1 | 2 || 4 | 5 |   ...   | 27 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.