WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 21 |
СОДЕРЖАНИЕ Предисловие Глава I: Знакомство с основами аквариумной химии Глава II: От Амазонки до Амура Глава III: Химическая лаборатория аквариумиста Глава IV: Декоративный аквариум в интерьере "Современный аквариум и химия" И. Г. Хомченко, А. В. Трифонов, Б. Н. Разуваев.

ПРЕДИСЛОВИЕ Аквариумистика в настоящее время приобрела большую популярность во всем мире. Значительно увеличилось число растений, рыб и других животных, которых содержат любители в своих домашних водоемах. Заметно возросли требования к декоративному оформлению аквариумов.

Высокий уровень развития аквариумистики не позволяет успешно содержать домашние водоемы, разводить растения и рыб без специальных знаний, в частности химии. Понимание химических процессов, протекающих в аквариуме, знание химического состава воды и умение управлять им, правильное использование химических препаратов — залог успеха в содержании и разведении рыб и водных растений (в том числе — наиболее трудных) и в общем благополучии декоративного аквариума.

Вопросы гидрохимии и использования химических препаратов обычно рассматриваются в книгах, посвященных общим вопросам аквариумистики, среди которых следует отметить книги М. Н, Ильина, В. С. Жданова, М. Д. Махлина, А. М. Кочетова. За рубежом выходили книги, посвященные аквариумной химии, например, монография Д. Холя, изданная в 1975 году в Лейпциге, Однако в ней изложены далеко не все вопросы, необходимые аквариумисту. В нашей стране подобных изданий не было, опыт авторов является первым.

Мы посчитали необходимым осветить в книге следующие вопросы: основные понятия общей химии и гидрохимии, которые необходимы аквариумисту (включая проведение простейших химических расчетов); описание химических процессов, которые протекают в аквариуме; общую и гидрохимическую характеристику различных регионов мира, в которых обитают аквариумные животные и растения; практические рекомендации по подготовке воды, проведению анализов, управлению составом воды в различных условиях, использованию различных препаратов химических и физико-химических методов; общие рекомендации по содержанию декоративных аквариумов. При этом авторы стремились максимально передать свой опыт и обобщить литературные данные (широко использованы как отечественные, так и зарубежные материалы).

Авторы книги - аквариумисты с большим стажем. В течение многих лет мы занимаемся коллекционированием водных растений, разведением рыб, проведением экспериментальных работ по гидрохимии аквариума, устройством декоративных водоемов. Поэтому мы считаем свое обращение к данной теме вполне оправ — данным. Однако мы не исключаем, что в книге имеются какие-то упущения, на которые любители - аквариумисты укажут нам. Будем признательны всем читателям, приславшим свои отзывы, замечания, пожелания, а также собственные материалы по теме книги.

Авторы признательны С. М. Кочетову за предоставленные слайды и информационные материалы, которые были использованы при работе над рукописью. Мы также выражаем благодарность московскому аквариумисту И. Годунову, который принял участие в написании главы «ЮгоВосточная Азия».

Авторы 1. ЗНАКОМСТВО С ОСНОВАМИ АКВАРИУМНОЙ ХИМИИ.

Аквариумистикой занимаются по-разному. Многие любители содержат аквариум, следуя известным рекомендациям и не вдаваясь в сущность процессов, происходящих в аквариуме, и при этом часто достигают успеха. Другие аквариумисты пытаются подробно разобраться в тех явлениях, которые происходят в домашнем водоеме. Для этого необходимы определенные знания гидрохимии, т. е. химии воды и водных растворов. Без таких знаний невозможно понять, почему в воде, взятой из одного источника, рыбы хорошо живут и размножаются, а в воде из другого — гибнут; почему одни растения чувствуют себя хорошо, а другие практически не растут; почему рыбы начинают «чесаться» о растения и камни и т. д. Не зная основ гидрохимии, невозможно освоить содержание и разведение новых редких видов обитателей аквариума и, конечно, не справиться с солоноводным и морским аквариумами.

Мы познакомим читателей с важнейшими понятиями химии, которые необходимы для понимания сложных химических, физико-химических и биохимических процессов, происходящих в аквариуме. При этом мы рассчитываем, что аквариумистам известны хотя бы элементарные химические понятия, которые изучаются в средней школе.

О ВОДЕ И ДРУГИХ ЭЛЕКТРОЛИТАХ Главное в аквариуме — это вода. Вода выполняет множество функций. Это среда обитания водных животных, растений, микроорганизмов; растворитель и источник питательных веществ для них. Вода участвует в обмене веществ, происходящем в живых организмах и во многих других процессах.

Вода — одно из наиболее распространенных веществ на Земле. Все водные ресурсы нашей Планеты образуют так называемую гидросферу, в состав которой входят океаны, моря, реки, озера, болота, ледники, снега, подземные воды. На долю гидросферы приходится более 75% площади поверхности Земли (заметим, что пресноводные реки и озера занимают приблизительно 1,7%). По оценкам специалистов масса всей воды на Земле составляет 1,5- 1019 тонн. Если всю эту воду равномерно распределить по поверхности нашей планеты, то образуется океан глубиной км.

Вода — вещество, обладающее очень интересными свойствами и имеющее достаточно сложную структуру. Некоторые свойства воды настолько необычны, что в литературе обычно говорится об аномалиях этого вещества, обусловленных его строением.

Вода может находиться в трех агрегатных состояниях: твердом (лед), жидком и газообразном (водяной пар). Вода замерзает, превращаясь в лед, при температуре 0°C. При температуре 100°C и нормальном давлении (1 атм.) вода кипит и переходит в пар. С этими крайними пределами состояния воды аквариумисты не встречаются. Обычно температура воды в домашнем водоеме +20° — + 28°С. При содержании холодноводных рыб температуру можно опускать до +8° - + 16°C, а при разведении или лечении рыб — поднимать до + 30° — + 35°С.



Рыбы не любят резких колебаний температуры воды: если их переводят из одного температурного режима в другой, то желательно, чтобы повышение температуры было не более, чем на 2°C в сутки, а понижение — на 1оС.

Важное физическое свойство любого вещества — это его плотность. Обычно эту величину обозначают символом, а единицами измерения являются кг/л (кг/дм3), г/мл (г/см3), г/л.

Плотность воды зависит от ее температуры. Так, при 0°C она равна 0,99984 г/мл, при 20°C — 0,99820 г/мл, а при 100°C — 0,95835 г/мл. При температурах, близких к аквариумным условиям, в различных расчетах обычно округляют значение плотности воды до 1 г/мл.

Химическое строение воды достаточно простое: молекула состоит из одного атома кислорода и двух атомов водорода, ее химическую формулу обычно записывают так: H2O. Однако, вода имеет целый ряд особенностей, аномалий физических свойств, которые делают это простое вещество очень сложным.

Одна из важнейших особенностей воды (и в то же время,— одна из ее аномалий) заключается в том, что вода при обычных условиях Земли является жидкостью. Многие близкие по химическому строению вещества (например, сероводород H2S) при этих условиях являются газами. Объяснить это свойство воды можно, если учесть строение ее частиц, показанное на рис. 1. Во-первых, молекула H2O имеет угловое строение. Во-вторых, молекула воды полярна, т. е. имеющиеся в ней заряженные частицы (электроны) распределены неравномерно; вблизи атома кислорода преобладает отрицательный заряд (избыток электронов), а вблизи атомов водорода — положительный заряд (недостаток электронов). На рис. 1 полярный характер молекулы воды показан знаками «+» и «-». Разноименно заряженные части различных молекул воды притягиваются, возникают так называемые водородные связи, что показано на рис. 2 (водородные связи обозначены пунктиром). В результате такого взаимодействия образуются ассоциаты из молекул воды, формулу которых можно представить в виде (H2O)n, где п равно 1, 2, 3... При температуре 0°C значение n обычно равно 3, а при 4°C — 2. Ассоциаты полностью распадаются, лишь, когда вода переходит в пар. Прочные связи между молекулами обусловливают пребывание воды в жидком состоянии при обычных условиях, а также некоторые другие свойства этого вещества.

Рис.1. Строение молекулы воды Рис.2. Водородные связи между молекулами воды Важным свойством воды является ее способность растворять многие вещества, как неорганические (минеральные кислоты, щелочи, соли), так и органические (органические кислоты, спирты, фенолы, альдегиды и многие другие). Аквариумная вода представляет собой не что иное, как раствор большого числа веществ, как органического, так и неорганического происхождения.

Аквариумистам следует уметь выражать количественный состав растворов, т. е. рассчитывать их концентрацию.

Один из наиболее распространенных способов выражения состава раствора — массовая доля растворенного вещества, которую принято обозначать буквой w. Массовая доля представляет собой отношение массы растворенного вещества m (р. в.) к массе раствора т. Обычно массовую долю выражают в процентах1 и рассчитывают по формуле:

Устаревшее название массовой доли растворенного вещества, выраженной в процентах, — процентная концентрация, В настоящее время это понятие, также как и термины «процентный состав», «процентное содержание» в химической литературе не используются.

Что же показывает массовая доля Например, известно, что массовая доля хлорида натрия NaCl в растворе составляет 3%. Это означает, что в 100 г раствора содержится 3 г NaCl и 97 г воды.

Соответственно в 1 кг раствора содержится 30 г NaCl и 970 г воды.

В аквариумной практике часто приходится приготовлять растворы с определенной массовой долей (растворы лечебных препаратов, удобрений и др.). Приведем примеры расчетов.

Пример. Для лечения рыб нужно приготовить 500 г 1%-ного раствора перманганата калия KMnO4. Сколько следует взять соли и воды Решение. Вначале узнаем плотность требуемого раствора, Плотности некоторых растворов с заданной концентрацией можно определить по справочной литературе (см., например: Лидии Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии.

М.: Химия, 1987. С. 253—274).

Если плотность неизвестна, а раствор достаточно разбавленный (как в данном примере), можно считать, что плотность раствора приблизительно равна плотности воды, т. е. = 1 г/мл. Тогда масса раствора будет равна произведению его объема V = 0,5 л = 500 мл на плотность:

(2) m = V • ;

m = 500 мл • 1 г/мл = 500 г., Используя формулу (1), рассчитаем массу перманганата калия, который потребуется для приготовления раствора:

w • m 1 • M(KMnO ) = ; m(KMnO ) = = 5 г.

4 100 Итак, для приготовления раствора надо взять 5 г перманганата калия.

Массу воды мы найдем, вычитая массу соли из массы всего раствора:

m(H O) = m — m(KMnO );

2 m(H O) = 500 г — 5 г = 495 г.

Учитывая, что плотность воды равна 1 г/мл, мы определяем: для приготовления заданного объема раствора надо взять 495 мл воды.

Более, сложный расчет надо провести в том случае, когда имеется более концентрированный раствор, из которого надо приготовить разбавленный раствор.





Пример. Имеется 30% — ный раствор соляной кислоты HCl. Требуется приготовить мл 5%— ного раствора HCl. Определить, сколько для этого потребуется 30% —ной соляной кислоты и воды.

Решение. По справочным таблицам определяем, что плотность 5%-ного раствора HCl равна 1,02 г/мл, а 30% —ного — 1,15 г/мл. Вначале вычисляем массу раствора, который надо приготовить, — m2 (объем этого раствора V2, плотность 2, массовая доля HCl;— w2).

m = V • ; m = 100 мл • 1,02 г/мл = 102 г.

2 2 2 Используя формулу (1), определяем массу соляной кислоты в 5% —ом растворе:

w • m 5 • 2 m(HCl) = ; m(HCl) = = 5,1 г.

100 Теперь вычисляем массу исходного раствора m1, в котором содержится 5,1 г HCl (его объем -V1, плотность — 1; массовая доля HCl в этом растворе — w1,):

m = m(HCl) • 100 ; m = 5,1 • 100 = 17 г.

1 w Зная плотность этого раствора, определяем его объем;

m 17 г V = ; V = = 14,8 мл.

1 1,15 г/мл Массу воды, которая потребуется для разбавления 30% —ного раствора, определяем так:

m(H O) = m — m ;

2 2 m(H O) = 102 г — 17 г = 85 г.

Таким образом, для приготовления 100 мл 5%— ного раствора HCl надо взять 14,8 мл 30% —ного раствора HCl и прилить 85 мл воды.

На этом примере также видно, что при смешении растворов сумма объемов двух компонентов не равна объему приготовленного раствора. Этот факт установил и теоретически обосновал Д.И.Менделеев.

Другим распространенным в аквариумной литературе способом выражения состава раствора является массовая концентрация, которая показывает сколько граммов или миллиграммов растворенного вещества содержится в 1 л раствора. Обозначение массовой концентрации, которое мы будем использовать в книге — x. Для расчета можно использовать формулу:

m(р.в.) x = (3) V где m(р. в) — масса растворенного вещества в г или мг.

Пример. Требуется приготовить 5л раствора лечебного препарата малахитового зеленого с концентрацией последнего 2 мг/л. Определите массу препарата, которую надо взять для приготовления раствора.

Решение. Используя формулу (3), получаем:

m(малах. зел) = x • V;

m(малах. зел) = 2 мг/л • 5 л = 10 мг.

Таким образом, чтобы приготовить требуемый раствор, надо взять посуду вместимостью 5 л (мерную колбу, мензурку, банку или аквариум с соответствующей отметкой), внести отвешенный малахитовый зеленый (10 мг), растворить его в небольшом количестве воды и довести объем раствора до 5 л.

В литературе по аквариумистике (особенно в изданной в США и Англии) часто используется единица концентрации, обозначенная буквами ррт (part per million — число частей из миллиона).

Этот способ выражения состава раствора аналогичен массовой концентрации в мг/л. Например, ррт = 5 мг/л.

Наконец, в некоторых расчетах, связанных с проведением химического анализа аквариумной воды, используется молярная концентрация c, которая показывает отношение количества растворенного вещества (в молях) n(р. в.) к общему объему раствора V:

n(р.в.) c = (4) V Молярная концентрация измеряется в моль/л. Для обозначения этой единицы часто используется символ М, Например, 1М — одномолярный раствор. Это означает, что c = 1 моль/л.

Количество растворенного вещества в молях определяется как отношение его массы m(р, в.) к молярной массе M(р. в.):

m(р.в.) n(р.в.) = (5) M(р.в.) Как пользоваться формулами (4) и (5), мы покажем на конкретном примере.

Пример. Рассчитайте массу щелочи NaOH (гидроксида натрия), которую нужно взять для приготовления 0,3 л раствора 0,5М NaOH.

Решение. Вначале надо рассчитать молярную массу NaOH. Для этого, пользуясь периодической системой элементов Д. И. Менделеева, находим атомные массы (Ar) натрия, кислорода и водорода и определяем молекулярную массу NaOH — Mr(NaOH):

Mr(NaOH) = Ar(Na) + Ar(O) + Ar(H);

Mr(NaOH) = 23 + 16 + 1 = 40.

Молярная масса численно равна молекулярной, но выражается в г/моль, т. е.

M(NaOH) = 40 г/моль.

Используя формулу (4), определяем количество вещества NaOH, который необходим для приготовления раствора:

n(NaOH) = c • V;

n(NaOH) = 0,5 моль/л • 0,3 л = 0,15 моль.

Теперь, зная молярную массу NaOH, находим массу требуемой щелочи по формуле (5):

m(NaOH) = n(NaOH) • M(NaOH);

m(NaOH) = 0,15 моль • 40 г/моль = 6г.

Следовательно, для приготовления раствора надо взять 6 г щелочи.

Мы привели лишь некоторые способы выражения состава растворов, а также несколько наиболее типичных и простых примеров расчетов. Если у аквариумистов возникнет необходимость более подробно ознакомиться с данным вопросом и рассмотреть более сложные расчеты, то следует использовать специальную литературу (например, Хомченко И. Г. Общая химия. М.: Новая Волна, 1997, с. 70—75; Хомченко И. Г. Сборник задач и упражнений по химии. М.: Высшая школа, 1989, с. 44—56), Для характеристики воды как растворителя надо отметить такое свойство, как растворимость — способность веществ растворяться в воде. Есть вещества, которые могут растворяться в воде практически неограниченно, образуя смеси любого состава (например, этиловый спирт, серная кислота). Другие вещества, встречающиеся в аквариумной практике, обладают ограниченной растворимостью в воде. Растворимость количественно выражают через максимальную массу вещества (или объем газа), которая может содержаться в 100 г воды при данной температуре.

Например, при 20°C в 100 г воды может раствориться 35,9 г хлорида натрия NaCl.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 21 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.