WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 31 |

Высвобождающаяся в процессах брожения или дыхания энергия аккумулируется клетками микроорганизмов в виде фосфатных связей аденозинтрифосфата (АТФ) в митохондриях эукариотов либо в мезосомах прокариотов. При брожении в клетках анаэробов запасается 0,09•106 Дж, большая часть энергии остается в конечных продуктах брожения, прочая теряется в форме тепловой энергии. При дыхании клетки микроорганизмов способны запасти 1,6•106 Дж. Одна половина этой энергии используется в физиологических отправлениях аэробных микроорганизмов, другая – теряется в виде тепла.

Известны микроорганизмы, способные преобразовывать часть полученной энергии в световую и обеспечивать тем самым свечение морской воды, рыбы и других природных объектов.

Микроорганизмы и факторы среды, обеспечивающие их жизнедеятельность Источники питания Развитие микроорганизмов, а именно их рост и размножение, контролируются определенными условиями и в первую очередь питательными веществами, из которых микроорганизмы синтезируют метаболиты, необходимые для жизнедеятельности.

Как и все живые существа, микроорганизмы нуждаются в важнейших биогенных элементах – углероде, азоте, кислороде и водороде, во многих макро- и микроэлементах, а также в витаминах, главным образом группы В.

Источники питания (факторы роста), необходимые для микроорганизмов, делятся на 4 группы:

- вещества, содержащие органогены (углерод, водород, кислород и азот), используемые ими для построения белков, жиров и углеводов;

- вещества, содержащие элементы (фосфор, калий, сера, магний), необходимые в меньшем количестве, но используемые ими в реакциях обмена;

- источники микроэлементов (марганца, железа, серебра, рубидия, ванадия и др.);

- органические вещества, в частности витамины.

Важнейший фактор роста и развития микроорганизмов – азот. Этот элемент необходим им для синтеза белков, нуклеиновых кислот, азотсодержащих полимеров клеточной стенки. Его содержание в бактериальных клетках и клетках грибов приблизительно одинаково: соответственно 12 и 10 % в абсолютно сухом веществе.

Микроорганизмы способны использовать многие источники азота, как неорганической, так и органической природы. Часть микроорганизмов использует в качестве фактора роста азот белков, часть – азот их мономеров – аминокислот.

По отношению к источникам углерода микроорганизмы делятся на автотрофов и гетеротрофов. Первые получают этот биогенный элемент из СО2 и карбонатов, вторые – из углеродсодержащих органических соединений. В свою очередь гетеротрофы подразделяются на сапротрофов и паразитов. Сапротрофы получают углерод из мертвых органических веществ растительного и животного происхождения, в том числе и из продуктов питания. Паразиты же питаются веществами живых организмов и используют их энергию.

Кислород – жизненно необходимый элемент питания для многих микроорганизмов, но для некоторых из них он губителен, так как разрушает их ферментативные системы. По отношению к кислороду микроорганизмы делятся на 4 основные группы:

Облигатные (обязательные) аэробы, к которым относится большинство прокариотов и нормальный рост которых в среде обитания возможен при содержании кислорода не менее 40–50 %. Они не способны получать энергию путем брожения. Для осуществления обменных процессов эти микроорганизмы нуждаются в молекулярном О2, поэтому их ферменты осуществляют перенос электронов от окисляемого субстрата к кислороду.

Как правило, облигатные аэробы развиваются на поверхности питательных сред. К ним относятся микрококки, B. subtilis и др.

Микроаэрофилы довольствуются незначительным содержанием О2 в среде обитания (~2 %).

Облигатные анаэробы вообще не нуждаются в молекулярном О2, так как он для них токсичен. Ферментативные системы таких бактерий денатурируют при контакте с молекулярным кислородом, что обусловлено образованием в их клетках перекиси водорода и перекисных соединений, которые в больших концентрациях ядовиты для микроорганизмов. Облигатные анаэробы погибают при концентрации Н2О2 0,0003 %, тогда как аэробы способны выдерживать до 0,015 %, то есть в 50 раз больше, что связано с образованием в клетках последних фермента каталазы, разлагающей перекись на воду и молекулярный кислород. Среди облигатных анаэробных бактерий – представители рода Clostridium, широко представленные в почве (возбудители опасных болезней человека – C. tetani – столбняка, C.

botulinum – ботулизма, C. perfringens – газовой гангрены). Следует отметить, что некоторые микроорганизмы не способны переносить даже остаточные количества молекулярного кислорода в среде обитания. К таковым относятся метановые бактерии и фузобактерии.

Факультативные анаэробы могут жить как при наличии, так и при отсутствии кислорода. Типичными представителями этой группы являются стрептококки, стафилококки, кишечная палочка. Так, кишечная палочка на среде с углеводами развивается как анаэроб, сбраживая сахара, а затем начинает использовать кислород как типичный аэробный организм, окисляя до СО2 и Н2О образовавшиеся продукты брожения.

Многие микроорганизмы нуждаются в обязательном присутствии таких элементов, как калий и магний. Роль этих элементов заключается в активации ферментных систем микробных клеток. Обладателями мощных ферментативных систем являются грибы, поэтому им крайне необходимы как калий, так и магний. Среди таких грибов Aspergillus niger.



В среде обитания многих микроорганизмов должны присутствовать такие элементы, как фосфор и сера, поскольку первый входит в состав нуклеиновых кислот и принимает активное участие в процессах дыхания и брожения, а сера является компонентом белков, в состав которых входят серосодержащие аминокислоты (метионин, цистеин).

Железо – крайне важный микроэлемент, используемый микрофлорой в процессе дыхания, так как, входя в состав дыхательных ферментов, способствует ускорению окислительных процессов. Для осуществления процессов дыхания микроорганизмам также необходима медь.

Кобальт используется микроорганизмами в процессе синтеза витамина В12, цинк же необходим им в процессах биосинтеза белка, так как принимает активное участие в формировании структуры ДНК.

Отдельные микроорганизмы нуждаются в наличии в среде обитания специфических микроэлементов. Так, дрожжевым грибам рода Candida для роста и развития необходим иод, а молочнокислым бактериям – марганец.

Вообще микроорганизмы, хотя и способны выживать в самых неблагоприятных условиях, предпочитают среды обитания со сбалансирован ным содержанием элементов. При их дефиците они могут погибнуть. В то же время экспериментальным путем было установлено, что при оптимальном содержании в среде обитания необходимых бактериальным клеткам элементов, они характеризуются постоянством соотношения Мg : К : РНКнуклеотид : РО4:

- для Грам+ – 1 : 13 : 5 : 13;

- для Грам- – 1 : 4 : 5 : 8.

Как было отмечено выше, многим микроорганизмам для роста и развития необходимы готовые органические вещества. Среди них – жирорастворимый витамин К (он необходим для молочнокислых бактерий). Потребность микроорганизмов в других жирорастворимых витаминах (А, Д, Е) небольшая. Некоторые микроорганизмы, в частности, лактобактерии, нуждаются в наличии в среде обитания ненасыщенных жирных кислот – олеиновой, линолевой, линоленовой, арахидоновой, в то же время для жизнедеятельности микоплазм необходим холестерин. Из водорастворимых витаминов микроорганизмы используют в обменных процессах практически все витамины группы В, в том числе тиамин (В1), рибофлавин (В2) и др.; в аскорбиновой кислоте (витамин С) микроорганизмы не нуждаются. В связи с тем что многие микроорганизмы являются продуцентами многих витаминов, их потребляют другие микроорганизмы, не способные к такому синтезу. К активным продуцентам витаминов группы В, а также жирорастворимых витаминов Е и К относятся дрожжи.

Физико-химические факторы внешней среды Жизнедеятельность микроорганизмов, как и любых других существ, теснейшим образом связана с факторами внешней среды, которые могут лимитировать их развитие в той или иной степени, обеспечивая преимущество в развитии наиболее приспособленным видам.

К физическим факторам, регулирующим рост и развитие микроорганизмов, относятся температура, влажность, различные виды лучистой энергии, электрический ток и др. Рассмотрим влияние каждого из них на жизнедеятельность микроорганизмов.

Температура. По отношению к этому фактору микроорганизмы подразделяются на три группы:

- психрофилы, нижняя граница роста которых находится около 0 0С. Выделяют факультативные и облигатные психрофильные микроорганизмы. Факультативные (иерсинии, некоторые штаммы псевдомонад, клебсиеллы пневмонии и др.) могут переносить температуру +30 0С и даже развиваться при ней. У облигатных психрофилов, обитающих в арктических и антарктических водах, ледяных пещерах, почвах вечной мерзлоты, для которых характерны медленно протекающие процессы биосинтеза и биодеградации, верхняя граница роста соответствует 20 С, оптимальная зона 10–15 0С;

- мезофилы (большинство сапротрофов, а также возбудителей болезней человека и животных), температурные границы роста которых находятся в пределах 20–45 0С (оптимум – 35–37 0С). Нижняя граница температуры покоя и смерти в зависимости от видовой принадлежности и формы существования у этих микроорганизмов начинается от 20 0С и простирается до глубоких минусовых температур. Верхняя граница зоны покоя начинается с 40–45 0С. Верхняя граница зоны смерти у вегетативных форм большинства видов равна 60–70 С при часовой экспозиции, у спор во влажной среде – 100–130 0С при получасовой экспозиции, в сухой среде – 180 0С также при получасовой экспозиции. Мезофилы обитают в организме теплокровных животных, в почве, воде, других средах, содержащих достаточное количество влаги и питательных веществ в пределах своей температурной зоны роста;

- термофилы, нижняя граница роста которых выше 45 0С. Выделяют термотолерантные, облигатные и факультативные термофильные микроорганизмы. Оптимальная зона роста термофилов равна 45–50 0С, но они могут расти и при более низких температурах (до 30 С). Зона роста факультативных термофилов соответствует 5–55 С, но задержанный рост может наблюдаться при более низких температурах. Температурные границы роста облигатных термофилов равны 45–93 0С. Предельные температуры роста простейших находятся в границах 56 С, водорослей – 55–60 0С, грибов – 60–62 0С, фотобактерий – 70–72 0С, хемолитотрофов и гетеротрофов – выше 90 0С. Архебактерии могут размножаться в средах с температурой в несколько сотен градусов, но не растут при 100 0С. Облигатные термофилы обитают в кипящих и горячих водоисточниках, промышленных и бытовых водах, самовозгорающихся материалах, конденсатах паровых труб.





Итак, некоторые микроорганизмы способны жить в достаточно широком температурном интервале, другие же предпочитают строго определенную температуру. Так, термофильные микроорганизмы плохо переносят холод, а холодолюбивые, напротив, не выносят высоких температур.

Чаще всего это связано с фактором устойчивости их ферментативных систем и клеточных органелл, эволюционно приспособленных к определенным условиям существования.

Высокую температуру обычно не переносят неспорообразующие бактерии, их гибель ускоряется при повышении температуры: при 60 С бактерии тифа погибают уже через 21 с и только спустя 2 ч при 47 0С. Под действием высоких температур в клетках микроорганизмов последовательно происходят изменения: выделение из клетки РНК; нарушение активности ферментативных систем; денатурация белков и, наконец, необра тимая деградация практически всех клеточных структур. Высокая температура лежит в основе приемов пастеризации и стерилизации.

Влажность. Бактерии нормально живут и размножаются при влажности среды 20 %. При этом для большинства микроорганизмов оптимальная влажность, при которой усиливается их размножение, около 60 %.

В то же время высушивание среды обитания губительно отражается на их развитии, так как вслед за обезвоживанием и почти полным прекращением обменных процессов клетки микроорганизмов могут впасть в состояние анабиоза. На отрицательном отношении большинства микроорганизмов к снижению влажности окружающей среды основано сохранение пищевой продукции. И все же, несмотря на негативное влияние высушивания, многие микроорганизмы способны длительное время сохранять свою жизнеспособность и без длительного доступа воды. Примером могут служить микобактерии туберкулеза, которые способны оставаться жизнеспособными в высохшей мокроте больного в течение 10 месяцев. На свойстве микроорганизмов длительное время сохранять свою жизнеспособность в высушенном состоянии основан метод сублимации, направленный на сохранение музейных культур микроорганизмов и заключающийся в их обезвоживании при низкой температуре под вакуумом.

Лучистая энергия. Различные ее виды по-разному отражаются на жизнеспособности микроорганизмов:

- прямой солнечный свет способствует уничтожению большинства представителей микроорганизмов, за исключением фототрофов, использующих световую энергию для своей жизнедеятельности;

- ультрафиолетовое облучение (УФО) обладает выраженным бактериостатическим и бактерицидным действием, в связи с чем его широко применяют при стерилизации оборудования, посуды, воздуха, воды, пищевых продуктов. Основной причиной гибели клеток микроорганизмов при ультрафиолетовом воздействии является нарушение биосинтеза белков, что происходит вследствие образования в молекуле ДНК димеров тимина (Т-Т) и подавления механизма ее репликации (удвоения);

- лучи рентгена и радия при непродолжительном воздействии способны стимулировать жизнедеятельность микробных клеток. Наибольшей устойчивостью к этому виду облучения обладают Грам+ бактерии. Кроме того, активно противостоят ему спорообразующие бактерии, а также вирусы и риккетсии.

Лучистая энергия применяется там, где невозможно применение других средств стерилизации. Стерилизацию пищевых продуктов чаще всего осуществляют посредством применения ламп ультрафиолетового облучения с длиной волны = 253,7 нм.

Электрический ток. Губительное воздействие электрического тока на клетки микроорганизмов связано с явлением электролиза и действием вредных для микроорганизмов окисленных продуктов (кислорода, хлора и его производных, а также кислот), образующихся при прохождении электротока через среду их обитания. Наиболее опасны для микроорганизмов токи ультравысокой частоты (УВЧ), так как обладают выраженным тепловым эффектом.

Ультразвуковое воздействие (УЗВ) – высокочастотные колебания звуковых волн (более 20 кГц), обладают ярко выраженным звуковым действием, вызывающим необратимые физико-химические изменения молекул и механические повреждения всех органелл микробной клетки, что позволяет использовать УЗВ для стерилизации субстратов, повреждающихся при тепловой обработке.

Бактерицидный эффект ультразвука усиливается при насыщении подвергающегося УЗВ объекта воздухом, азотом, кислородом и другими газами, так как это усиливает эффект кавитации (от лат. cavitas) – образование в жидкости полостей (кавитационных пузырьков или каверн), обеспечивающих разрыв жидкости. В то же время бактерицидный эффект от УЗВ уменьшается, если явление кавитации подавляется, что происходит при дегазации или погружении объекта в вязкую среду.

К УЗВ чувствительны все микроорганизмы, в том числе и спорообразующие, но по степени чувствительности к этому фактору они значительно отличаются. Среди патогенных микроорганизмов наибольшую устойчивость к УЗВ выявили у Mycobacterium tuberculosis. Довольно устойчивы к УЗВ представители родов Sarcina и Saccharomyces. В то же время действие УЗВ плохо переносят и легко разрушаются Proteus vulgaris, Pseudomonas fluorescens, Staphylococcus aureus, Bacillus anthracis, Salmonella typhimurium.

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 31 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.