WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 9 | 10 || 12 |

Включением тумблера SA1, смонтированного на пульте управления, подается напряжение на автотрансформатор. С движка автотрансформатора часть напряжения подается на высоковольтный автотрансформатор Т1. На Блок поджига Излучающая Пульт головка управления Блок Выпрямительный конденсатора блок Рис.7.2. Функциональная схема твердотельного лазера PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com выход выпрямителя подключена батарея конденсаторов С1. Параллельно конденсаторам подключен киловольтметр PV1. Напряжение на конденсаторах подается через блокировочные контакты SA2 на две импульсные лампы Н1. Контакты SA2 управляются от двери шкафа, в котором размещены конденсаторы. При открывании шкафа конденсаторы через резистор R2 разряжаются на землю. В рабочем состоянии импульсные лампы все время подключены к заряженным конденсаторам, однако, это не приводит к их вспышке, так как требуемое пробивное напряжение значительно выше. Для обеспечения вспышки лампы служит система зажигания. Она работает следующим образом: напряжение от сети подается на трансформатор Т3, с выходной обмотки которого снимается напряжение до 1000 В. Выпрямленным током заряжается конденсатор С2. После включения кнопки пуска SB1, установленной на пульте управления, Призма Зеркало Активное вещество Лампавспышка ЭД ИП Рис.7.4. Лазер с модуляцией добротности резонатора конденсатор С2 разряжается через первичную обмотку импульсного трансформатора Т2. Во вторичной обмотке индуктируется высокое напряжение, достаточное для получения пробоя воздушного промежутка в импульсной лампе. Это напряжение подается на внешний электрод лампы.

Ионизация газа в лампе приводит к резкому снижению сопротивления, и конденсатор С1 разряжается через лампу, сопровождая разряд интенсивным свечением. Возникающее излучение вызывает переход ионов хрома в возбужденное состояние.

7.7. ОПТИЧЕСКИЕ ЗАТВОРЫ Чтобы сосредоточить излучение в очень коротком интервале времени A применяют лазер с модуляцией добротности резонатора Q =, 1 - A (рис.7.4).

Одно из зеркал выполнено глухим - левое, а правое зеркало расположено на оси электродвигателя. Если зеркало повернуто на 90° к тому, PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com что изображено на рисунке, то добротность резонатора Q равна 0, в этом случае стимулированного излучения быть не может, хотя возможно перевести все ионы хрома в возбужденное состояние, то есть осуществить накачку активного вещества энергией. Если теперь резко перевести правое зеркало в положение, когда оно станет перпендикулярно оси активного вещества, то добротность резонатора станет максимальной. В стержне мгновенно возникает генерация. Вся энергия, запасенная в возбужденных ионах активного вещества, высвобождается в одном коротком импульсе длительностью 10-9 с.

Помимо вращающихся зеркал, в качестве оптических затворов используются различные ячейки. В качестве оптических затворов используют просветляющие фильтры. Их действие основано на том, что они меняют свою прозрачность под действием светового потока. Один из таких фильтров работает следующим образом: он сделан в виде кюветы с раствором металлической соли фталоциана, которая помещается между стержнем лазера и одним из зеркал. Раствор сильно поглощает свет на частоте генерации рубина, поэтому усиление света с помощью резонаторов не происходит (добротность резонатора равна 0). В это время осуществляется накачка активного вещества. Когда энергия накачки увеличится до значения, при котором усиление рубина превысит потери на поглощение в растворе фталоциана, лазер начнет довольно слабо излучать когерентный свет.

Небольшое количество этого дополнительного света оказывается достаточным для обесцвечивания раствора настолько, чтобы он стал совершенно прозрачным. В этот момент сразу пойдет резкое увеличение генерации, и вся накопленная энергия будет мгновенно испущена в виде мощного импульса. После этого раствор быстро возвращается в свое исходное состояние и вновь готов для образования следующего импульса.

7.8. ТЕХНОЛОГИЧЕСКИЕ ЛАЗЕРЫ Требования к промышленным технологическим лазерам [1,9].

Технологический лазер представляет собой устройство, предназначенное для работы в составе комплекса промышленного оборудования, производящего изделия машиностроения, приборостроения или материалы с заданными физическими или химическими характеристиками. Поэтому технологические лазеры должны удовлетворять, во-первых, общим требованиям, предъявляемым к любому промышленному технологическому оборудованию; во-вторых, - специфическим требованиям, предъявляемым со стороны лазерного технологического процесса или связанным с особенностями лазерного луча как рабочего инструмента. Для выполнения этих требований технологический лазер должен обладать соответствующими параметрами конструкции и рабочего тела, быть PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com полностью автоматизированным, являться составной частью автоматизированного лазерного технологического комплекса. Конструкция технологического лазера и условия его эксплуатации должны обеспечивать полную безопасность в его работе и удовлетворять гигиеническим, экологическим и эстетическим требованиям. Особой группой условий промышленного применения технологических лазеров является техникоэкономическая целесообразность использования каждого конкретного вида лазерной технологии при изготовлении определенных промышленных изделий. Этот вопрос должен всегда рассматриваться, во-первых, применительно к текущему состоянию промышленной технологии и, вовторых, в перспективе на ближайшие годы.

Требования к параметрам лазерного излучения со стороны лазерных технологических процессов Основными требованиями, определяющими физическую возможность того или иного процесса лазерной обработки изделий (при термической технологии) или веществ (при селективной технологии), является интенсивность излучения на поверхности обрабатываемого изделия (или в сечении пучка при обработке веществ) и длительность воздействия излучения. Соответствующие величины для процессов термической и лазерной обработки изделия представлены в таблице 7.1.

Таблица 7.Процесс лазерной технологии Параметр Поверхностная Пробивка Сварка Резка термообработка отверстия Интенсивность излучения на 0,5104 2105 2106 107... поверхности, Вт/смДлительность воздействия 10-2...1 10-3...1 10-3...1 10-5…10-излучения, с Диапазон средней мощности 1...5 2...5 0,5...5 0,5...излучения, кВт Угловая расходимость по уровню 2...5 1...2 0,3...1 0,5...0,86 полной мощности, мрад Длина транспортировки 3...10 3...10 1...15 1...излучения, м Допустимая нестабильность ±3 ±3 ±2 ±полной мощности, % Допустимая нестабильность ±2 ±3 ±2 ±угловой расходимости, % Допустимая угловая 0,2 0,25 0,03 0,нестабильность оси пучка, мрад Следующим важным требованием является средняя мощность излучения, определяющая производительность процесса и в некоторых PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com случаях его принципиальную физическую возможность. Диапазон мощностей технологических лазеров от 0,5 до 5 кВт в настоящее время по экспертным оценкам покрывает большую часть потребностей и применения технологических лазеров в технологии машиностроения. Требования к угловой расходимости пучка лазерного излучения связаны с требованиями достижения необходимой интенсивности излучения при фокусировке.

Допустимые величины нестабильностей полной мощности излучения, угловой расходимости и углового положения оси пучка определяют качество процесса лазерной обработки.

В случае процессов селективной атомно-молекулярной лазерной технологии (лазерный химический синтез, лазерная сверхтонкая химическая очистка вещества и т.п.) добавляются требования к другим параметрам лазерного излучения: монохроматичности 10-8...10-9 ; к диапазону max длин волн излучения =0,2...20 мкм; длительности импульса И=10-12... 10-7 с;

пиковой мощности РИМП=108... 1010 Вт.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com Рис.7.5. Структурная схема лазерной технологической установки:

1 – лазер; 2 – излучение лазера; 3 – оптическая система; 4 – обрабатываемый материал; 5 – устройство для закрепления и перемещения обрабатываемого объекта; 6 – система подачи технологической среды; 7 – источник вспомогательной энергии; 8 – программное устройство; 9 – датчик параметров излучения; 10 – датчик параметров технологического процесса.

Структурная схема лазерной технологической установки ВЫВОДЫ ПО СЕДЬМОМУ РАЗДЕЛУ 1. Все традиционные источники света дают спонтанно излучаемый свет. Спонтанное излучение носит шумоподобный характер.

2. При индуцированном излучении возбужденные частицы испускают кванты, не отличимые от приходящих извне, то есть имеющие такую же частоту, поляризацию и направление распространения.

3. Чтобы индуцированное излучение преобладало над поглощением, необходимо за счет внешних сил вывести систему частиц из состояния термодинамического равновесия.

4. Система из двух зеркал позволяет получить эффект многократного прохождения излучения через возбужденную среду, что приводит к резонансному усилению электромагнитной энергии. На выходе из резонатора энергия распределена в узком, почти параллельном пучке.

5. Лазерное излучение характеризуется узконаправленностью, монохроматичностью, значительной выходной мощностью, когерентностью.

6. Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход поступает незначительный сигнал на частоте перехода. На вход генератора излучение на частоте перехода уже не подают, а возбуждают и более того перевозбуждают активное вещество. На выходе генератора возникает электромагнитное излучение.

7. Лазеры широко применяются в промышленности. К лазерным технологическим процессам относятся поверхностная термообработка, PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com сварка, резка, пробивка отверстий и др. Интенсивность излучения на поверхности составляет от 0,5104 до 108 Вт/см2, средняя мощность излучения – от 0,5 до 5 кВт. В случае процессов селективной атомно-молекулярной лазерной технологии пиковая мощность достигает 108… 1010 Вт.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com ЧАСТЬ 4. СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ 8. Тиристорные трансформаторы.

Тиристорные трансформаторы (ТТ) — сравнительно новая группа источников питания дуги переменного тока, в основу которой положен способ фазового регулирования тока. Основным узлом ТТ является тиристорный фазорегулятор (ФР), работающий в комплекте с силовым трансформатором. Фазорегулятор состоит из двух встречно-параллельно соединенных тиристоров и системы управления фазой их включения[8].

Способ фазового регулирования переменного тока основан на преобразовании синусоидального тока в знакопеременные импульсы, амплитуда и длительность которых определяются углом (фазой) включения тиристоров. Этот способ, широко используемый в машинах контактной и шлаковой сварки, для дуговой сварки считался неприемлемым, поскольку в паузы между импульсами тока происходит быстрая деионизация дугового промежутка, затрудняющая повторные возбуждения дуги.





В литературе [8, с. 375] указывается, что в последние годы разработан ряд конструкций ТТ, обеспечивающих достаточно высокую стабильность горения дуги и позволяющих реализовать достоинства фазового регулирования тока: снизить массу и упростить конструкцию силового трансформатора и всего источника в целом, сформировать внешние характеристики требуемого вида, стабилизировать режим сварки при различных возмущениях, управлять постоянной составляющей сварочного тока, обеспечить возможность автоматизации, программирования и модуляции режима сварки, обеспечить снижение выходного напряжения при холостом ходе.

8.1. Классификация тиристорных трансформаторов.

Силовые схемы ТТ могут быть подразделены по двум основным признакам: способу обеспечения непрерывности процесса сварки и месту установки тиристорного фазорегулятора — в первичной или вторичной цепи.

По первому признаку ТТ делятся на две группы.

1. Сварочный ток прерывистый. Длительность протекания тока определяется углом включения силовых тиристоров, который здесь является также углом сдвига между током i2, и напряжением холостого хода трансформатора U2O.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com Рис. 8.1. Диаграммы напряжения и токов трансформатора с импульсной стабилизацией.

Для надежного повторного возбуждения применена импульсная стабилизация горения дуги. В момент окончания бестоковой паузы на дугу накладывается стабилизирующий импульс тока. Тиристорный фазорегулятор совмещает функции управления током и коммутирующего элемента импульсного стабилизатора горения дуги.

2. Стабильность процесса сварки обеспечена непрерывностью сварочного тока. Для заполнения бестоковых пауз в интервалы непроводимости тиристоров использована специальная цепь, называемая цепью подпитки дуги, по которой проходит минимально необходимый для устойчивого процесса сварки ток (ток подпитки i20).

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com Рис.8.2. Диаграммы напряжения и токов трансформаторов с цепью подпитки.

Сдвиг между током i20 и напряжением U20 определяется углом, зави- сящим от соотношения напряжений дуги Uд и цепи подпитки:

Uд cos = ' 2U20m где U’20m — амплитудное значение напряжения цепи подпитки.

В промышленных сварочных установках наибольшее распространение получили ТТ с прерывистым регулированием тока и импульсной стабилизацией, так как применение цепи подпитки связано с дополнительным расходом активных материалов, с применением дополнительного коммутатора в цепи подпитки для снятия напряжения холостого хода, а относительно низкая скорость нарастания тока подпитки при смене полярности обусловливает невысокие сварочные качества источников.

Размещение тиристорного ФР в первичной или вторичной (сварочной) цепи трансформатора во многом определяет конструкцию ТТ.

Во всех случаях, когда не требуется управления постоянной составляющей сварочного тока, предпочтительно включать тиристоры в сравнительно слаботочную цепь первичной обмотки трансформатора. Кроме уменьшения габаритов регулятора и потерь в тиристорах, такое решение позволяет снизить или исключить потери холостого хода трансформатора, обеспечивает оперативное отключения его от питающей сети. Однако при включении тиристоров в первичную цепь трансформатора невозможно регулировать (компенсировать) постоянную составляющую сварочного тока, повышаются требования к симметрии импульсов управления тиристорами, к надежности и электрической прочности цепей управления.

8.2. Трансформаторы с цепью подпитки.

По данным многочисленных экспериментов значение тока подпитки, до- статочное для стабильного горения дуги, составляет: 10 — 15 А — для аргонодуговой сварки неплавящимся электродом алюминиевых сплавов при наличии импульсного стабилизатора дуги и напряжении холостого хода источника питания около 70 В; 10 — 15 А — для ручной дуговой сварки обмазанными электродами; 20 — 30 А— для автоматической сварки под флюсом.

На рис.8.3 представлены упрощенные схемы ТТ с цепью подпитки и тиристорами в цепи вторичной обмотки трансформатора. В схеме на рис.8.3а тиристоры шунтированы дросселем, реактивные сопротивления PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com которого wL2 на порядок выше сопротивления wL1 силового трансформатора Т1.

Схемы ТТ, приведенные на рис.8.3б, в позволяют повысить напряжение хх источника без заметного увеличения его установленной мощности. В цепь подпитки введена дополнительная обмотка силового трансформатора Т1. В схеме рис.8.3б дополнительная обмотка и дроссель подпитки включены последовательно и согласно с основной вторичной обмоткой трансформатора Т1. В схеме рис.8.3в дополнительная обмотка и дроссель подпитки включены параллельно нагрузке ИП. Напряжение параллельно включенной цепи подпитки U’20 выше напряжения U20, что исключает возможность включения тиристоров на хх; во время сварки основная и подпиточная цепи развязаны дуговым падением напряжения.

Дополнительная обмотка и дроссель в схемах рис.8.3б,в могут быть заменены отдельным трансформатором с напряжением хх U’20 и требуемым реактивным сопротивлением или обмоткой силового трансформатора, имеющей слабую магнитную связь с первичной обмоткой.

Pages:     | 1 |   ...   | 9 | 10 || 12 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.