WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 12 |
ЭЛЕКТРОТЕХНОЛОГИЧЕСКИЕ УСТАНОВКИ И ИХ ИСТОЧНИКИ ПИТАНИЯ Учебное пособие для студентов вузов Тольятти 2002 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com Электротехнические установки и их источники питания: Учебное пособие для вузов по спец. «Промышленная электроника»./ Сост. В.И.Бар,- Тольятти: ТГУ, 2002.

Рассмотрены физические процессы, протекающие в основных видах электротехнологических установок, их конструктивные схемы и принципиальные схемы полупроводниковых источников питания. Для индукционных нагревательных установок приведена инженерная методика расчета.

Предназначено в качестве учебного пособия для студентов, обучающихся по специальности «Промышленная электроника» очной, очнозаочной и заочной форм обучения.

Составитель Бар В.И.

2 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com ВВЕДЕНИЕ 1. КЛАССИФИКАЦИЯ ЭЛЕКТРОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ Научно-технический прогресс на рубеже XX-XI вв. неразрывно связан с развитием высоких технологий, обеспечивающих, с одной стороны, получение новых материалов и изделий, а с другой – снижение энерго- и ресурсозатрат, повышение экологических показателей производства[1,10].

Значительное место в ряду новых технологий занимают электротехнологии, что связано с многообразием электрофизических, электрохимических эффектов, лежащих в их основе, простотой контроля и управления электротехнологическими процессами, возможностью их комплексной автоматизации.

К электротехнологическим относятся процессы, основанные на преобразовании непосредственно в рабочей зоне технологических установок энергии электрического тока, электрического и магнитного полей в тепловую, химическую или механическую энергии, за счет которых реализуется заданный процесс[10].

Традиционно выделяют пять групп электротехнологических процессов Электротехнология Электротермия Электросварка Электро- Электро- Аэрозрольные химические физические технологии методы методы Электромехани- ческие методы Рис. 1 Классификация электротехнологических процессов (рис. 1).

В электротермических процессах используется превращение электрической энергии в тепловую для нагрева материала изделий с целью изменения их агрегатного состояния, формы или свойств.

В электросварочных процессах получаемая из электрической энергии тепловая энергия используется для создания неразьемного соединения деталей.

В электрохимических процессах с помощью электрической энергии осуществляется разложение химических соединений и их разделение в жидкой среде под действием электрического поля (электролиз, гальванотехника, анодная электрохимическая обработка).

Электрофизические методы используют специальные физические эффекты для превращения электрической энергии как в тепловую, так и в механическую (электроэрозионные, ультразвуковые, магнитоимпульсные, электровзрывные, плазменные, электронно-лучевые, лазерные технологии).

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com В аэрозольных технологиях (электронно-ионных) энергия электрического поля используется для сообщения электрического заряда взвешенным в газовом потоке частицам и для перемещения их в заданном направлении.

Наряду с перечисленными методами в различных отраслях промышленности нашли применение технологические процессы и установки, в которых основные и вспомогательные операции реализуются за счет непосредственного механического (силового) воздействия электрического и магнитного полей на обрабатываемые изделия и материалы. Такие методы и установки можно классифицировать по виду полей, воздействующих на объекты технологической обработки: стационарные, пульсирующие, вращающиеся, бегущие.

Наиболее известны и широко применяемые электротехнологические установки (ЭТУ) используют силовое действие стационарных электрического и магнитного полей. Например, стационарные электрические поля применяются в аэрозольных технологиях (пылегазоочистка, электроокраска, электрография, нанесение порошковых покрытий), в электрических сепараторах для разделения твердых сыпучих смесей, в устройствах водоочистки.

Стационарные магнитные поля используются в магнитных сепараторах для извлечения ферромагнитных предметов и частиц из сырья и отходов, для разделения минеральных смесей в обогатительном производстве, при водоочистке, а также для захвата или фиксации стальных заготовок и удаления металлоотходов из рабочей зоны при металлообработке.

С использованием пульсирующих магнитных полей работает ряд электродинамических устройств и некоторые виды магнитных или электродинамических сепараторов.

Воздействие импульсных электромагнитных полей применяется в устройствах для магнитоимпульсной обработки материалов давлением и при электродинамической сепарации.

Вращающиеся и бегущие магнитные поля используются в МГДтехнологиях, обработке жидких металлов (перемешивание, транспортировка и т.д.), при электродинамической сепарации и водоочистке.

Перечисленные процессы и установки, использующие механическое действие электрического и магнитных полей, нашли достойное применение в самых различных отраслях промышленности (металлургия, металлообработка, машиностроение, горнообогатительное производство, природоохранные технологии).

Отличительной особенностью всех указанных электромеханических технологических устройств является то, что их рабочим телом непосредственно служат обрабатываемые изделия и материалы, т.е.

отсутствуют промежуточные электромеханические преобразования энергии.



Наличие такого четкого обобщающего признака позволяет классифицировать электромеханические технологические процессы и установки как отдельную группу в ряду других электротехнологических методов и установок.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com Очевидно, что выделяемая в традиционной классификации группа “аэрозольные технологии” поглощается более широким понятием “электромеханические методы”.

В левой части схемы (рис.1) указаны процессы, основанные на преобразовании электрической энергии в тепловую.

В центре схемы (рис.1) – электрохимические и электрофизические методы, в которых основные процессы под действием электрической энергии происходят на молекулярном уровне.

В правой части схемы (рис. 1) – методы, основанные на использовании электромагнитных сил.

Группу технологий, размещенных в центре схемы (рис. 1) можно разбить на подгруппы:

первая подгруппа – методы высокоинтенсивного нагрева (электроннолучевые, плазменные, лазерные), тяготеющие к электротермии и электросварке.

вторая подгруппа – ионно-обменные методы (электрохимические технологии).

третья подгруппа – электроакустические ультразвуковые методы, примыкающие к электромеханическим процессам.

Такая схема приближается к схеме идеальной классификации электротехнологических методов (электротермические, электрохимические, электромеханические), соответствующие трем видам преобразования энергии: тепловая, химическая, механическая.

2. СТРУКТУРА ЭЛЕКТРОТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА Современный электротехнологический процесс характеризуется множеством параметров, определяющих его основные техникоэкономические показатели: производительность, качество конечного продукта, удельные затраты энергии и труда, массу и габариты СУП ДО ВЭ ПИЭ (пром. сеть) ПЭЭ среда КП СУП - система управления процессом; ПИЭ - первичный источник энергии;

ДО - дополнительное оборудование; ПЭЭ - преобразователь электроэнергии;

ВЭ - выводимая энергия; КП - конечный продукт.

Рис.2 Функциональная схема электротехнологического процесса установленного оборудования, себестоимость готовой продукции и многое другое. При этом определяющие показатели технологического процесса зависят не только от выбранного способа обработки (технологии), но в PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com существенной мере и от параметров, и режимов работы отдельных элементов (блоков технологического оборудования)[4].

Для создания заданного конечного продукта с требуемыми характеристиками необходимо определенным образом преобразовать электроэнергию, получаемую, как правило, от промышленной сети переменного тока.

В зависимости от вида технологического процесса первичная электроэнергия преобразуется в конечном виде в энергию химических связей, механическую энергию, либо во внутреннюю энергию. Нередко процесс преобразования энергии является многократным. Например, при лазерной резке электрическая энергия первоначально превращается в энергию когерентного светового излучения, которая, воздействуя на деталь, разогревает либо испаряет материал детали, совершая тем самым механическую работу. При ионном азотировании на поверхности обрабатываемых деталей образуются химические соединения обрабатывающей газовой среды с материалом деталей при одновременном ускорении диффузионных процессов в обрабатываемом материале. Таким образом, между обрабатываемым изделием и источником электроэнергии, как правило, присутствует определённая среда (газовая, жидкая, световая и т.д.), характеристики которой определяют характеристики нагрузки преобразователя электроэнергии.

Задача преобразователя электрической энергии: согласовать электрические параметры питающей сети с электрическими параметрами среды при обеспечении заданных условий.

Качество конечного продукта существенно зависит от свойств среды, которые определяются характеристиками преобразователя электрической энергии и характеристиками дополнительного оборудования (например, откачной системы, характеристиками газовой среды в ионном азотировании).

В современной электротехнологии электроэнергия, получаемая от промышленной сети переменного тока, как правило, должна быть преобразована к виду, удобному для потребления (электрическая энергия постоянного тока с заданными параметрами, импульсная электроэнергия, энергия переменного тока повышенной частоты и т.д.). При этом через преобразователь электроэнергии передаётся основная часть либо вся энергия, потребляемая технологическим процессом, в том числе и вспомогательная энергия, выводимая из технологического контура, например в виде избыточной тепловой энергии, снимаемой с газовой среды в ионном азотировании, лазерных установках и т.д.

Таким образом, преобразователь электрической энергии оказывает непосредственное влияние на физические характеристики технологического процесса (, cos, гармонический состав потребляемого тока, несимметрию и т.д.). Нередко выходные характеристики преобразователя оказывают непосредственное воздействие на конечный продукт и могут приводить к его необратимым изменениям (браку).

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com При возникновении дуговых разрядов в камере ионного азотирования необходимо быстрое отключение нагрузки от питающей сети во избежание образования раковин на обрабатываемой поверхности. Скорость отключения энергии, передаваемой в нагрузку при дуговом разряде, непосредственно определяется динамическими и нагрузочными характеристиками преобразователя. В процессе технологической обработки характеристики среды, в которой происходит процесс, непрерывно изменяются самопроизвольно, либо по программе, определяемой видом технологии.





Наблюдаются плавные самопроизвольные изменения (деформация ВАХ среды с ростом температуры, давления и т.д.), либо скачкообразные изменения (переход одного вида разряда в другой при ионном азотировании, образование контактных точек при электроконтактной сварке и т.д.). Таким образом, существует некоторая обратная связь со стороны нагрузки, поэтому выходные характеристики преобразователя должны отвечать требованиям, определяемым не только статическими, но и динамическими параметрами среды (нагрузки преобразователя).

Таким образом, преобразователь электрической энергии является одним из главных, определяющих звеньев технологической цепи, оказывающих влияние на основные технико-экономические характеристики технологического процесса. Часто не удаётся оптимальным образом организовать электротехнологический процесс, приспосабливая к требованиям технологии известные типы преобразователей. Поэтому актуальна разработка новых видов преобразователей электроэнергии, наилучшим образом отвечающих задачам электротехнологии.

3. ИСТОЧНИКИ ПИТАНИЯ (ИП) Широкое внедрение современной электротехнологии в промышленность невозможно без создания специализированных источников питания. Приспособление известных устройств преобразовательной техники не позволяет реализовать все преимущества новых технологических процессов, ограничивает их производительность. Только комплексное решение вопросов разработки, технологической части и ИП с учётом их взаимного влияния позволяет создавать ЭТУ повышенной производительности, надёжности и с улучшенными техникоэкономическими показателями[4].

Тенденция к увеличению единичной мощности установок выдвигает повышенные требования к энергетическим характеристикам преобразователей электрической энергии, уменьшению их влияния на питающую сеть, т.е. возникает вопрос об их электромагнитной совместимости. Трудоёмкость разработки ИП оказывается соизмеримой с разработкой технологической части установки. Также как и в своё время получило развитие направление тиристорного электропривода, так в PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com настоящее время бурно развивается направление полупроводниковых ИП ЭТУ.

Новое направление определяется общностью характера нагрузок, которыми являются, например, различные виды газового разряда, характеризующиеся нелинейной нагрузкой с малым или даже отрицательным дифференциальным внутренним сопротивлением, значение которого зависит от ряда факторов и может существенно отличаться в статическом и динамическом режимах. Поэтому в отличие от тиристорного электропривода ИП ЭТУ, исключая электротермические установки, которые не предъявляют столь жёстких требований к ИП, должны обладать характеристиками источника тока, а в ряде случаев должны иметь две зоны регулирования, в одной из которых они должны обладать характеристиками источника напряжения, а в другой – тока (например, в сварочных установках).

Для уменьшения коэффициента усиления системы регулирования выходных параметров, повышения надёжности, увеличения стабильности и обеспечения защиты во всех режимах работы необходимо увеличение частоты преобразования электрической энергии, связанное с принудительным запиранием тиристоров. При этом тиристорный преобразователь должен быть высокодинамичным, обеспечивать нормальную работу установки от режима короткого замыкания до режима холостого хода, обладать способностью отключать нагрузку, автоматически повторно включать её. В схеме должны отсутствовать перенапряжения как в статическом, так и в динамическом режимах, а установленная мощность оборудования должна быть минимальна. Сочетание такого преобразователя с простой и надежной системой регулирования позволяет обеспечить получение требуемых характеристик в целом и упростить задачу разработки технологической части.

4. ОБЛАСТИ ПРИМЕНЕНИЯ ТИРИСТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ ПОВЫШЕННОЙ ЧАСТОТЫ Среди всех ЭТУ, в которых применяются токи высокой частоты, наиболее энергоемкими являются электротермические установки, предназначенные для нагрева и плавки металла, а в перспективе – и для нагрева газа (индукционная плазма)[6,7].

О развитии электротермии свидетельствуют следующие цифры: расход электроэнергии на электротермические процессы с 1965 по 1976 годы вырос на 5,5% и составил 8,3% от всей электроэнергии, потребляемой промышленностью; с 1970 по 1976 годы выпуск электропечей вырос в 1,раз, в том числе индукционных плавильных в 4 раза. Этой общей тенденции подчинено и развитие электротермических установок повышенной частоты.

Основная часть мощности приходится на индукционные плавильные печи и установки для нагрева под пластическую деформацию как по единичной мощности установки, так и по сравнительной массовости применения этого PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com вида установок. Единичная мощность индукционных плавильных печей повышенной частоты составляет от ста до нескольких тысяч киловатт.

Рабочая частота не превышает 2,4 кГц, причем чем меньше емкость печи, а следовательно, и потребляемая мощность, тем выше частота.

Установки для нагрева под пластическую деформацию имеют единичную мощность от 250 кВт до нескольких тысяч киловатт. Установки мощностью меньше чем 250 кВт для данной технологии встречаются редко.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 12 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.