WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 | 5 |   ...   | 15 |

T = 183m сек, (I.14), P где m - максимальный радиус газового пузыря, p0 - гидростатическое давление на глубине взрыва, 0 - плотность воды. Максимальное давление в первой пульсации пузыря составляет 10—20% от давления в ударной волне. Эта величина еще довольно значительна, особенно при взрывах больших зарядов, и способствует образованию так называемых повторных ударов, которые мешают приему полезных волн от поддонных горизонтов. Дело в том, что вторая и третья пульсации (а их обычно насчитывается до 10) действуют как дополнительный источник возбуждения и колебания от них достигают дна и возвращаются в виде отражения, следующих на времени 0,10,15 с. за основным отражением ударной волны.

В связи с этим, взрывы стараются производить либо вблизи поверхности воды (1,5—2 м), где уже первая пульсация схлопывается, выбрасывая часть энергии взрыва в воздух, либо на определенных глубинах, где период пульсации совпадает с периодом основных полезных колебаний и не мешает их приему, а наоборот, усиливает их.

По мере распространения от центра взрыва, фронт ударной волны испытывает деформацию в результате потерь на расширение, вязкость, теплопроводность.

При этом начальное давление и скорость постепенно уменьшаются до звуковых значений и фронт из овального преобразуется в крутой, т.е. в область больших давлений и малых скоростей. Это поясняется на рис. 5 и следующих из него формул dP dP = ; = ; (V1›V2);

V V 1 dx dx A B (I.15) dP dP = = const.

dx dx A B Таким образом, при достаточном удалении от центра взрыва нелинейные процессы на фронте ударной волны исчезают и распространение упругих волн подчиняется обычным законам акустики.

Экспериментальные наблюдения показывают, что давление в ударной волне изменяется в виде колокольного импульса, хорошо аппроксимирующегося выражением:

t p = pme ; (I.16) где Pm— пиковое давление, — постоянная времени, зависящая от величины заряда W и расстояния от центра взрыва r:

-0,W = 97,6W (I.17) r Пиковое давление определяется из эмпирической формулы:

, W Pm = 521108. (I.18), r Спектры взрыва Спектр взрыва определяется выражением Фурье:

+ f (t)e-iwt dt S(w) = (I.19) + f (t) = S(w)eiwt dw - Определим спектр взрыва, импульс которого задан в виде:

t f (t) = Pme-, t (I.20) - +iw t S(w) = Pme e-iwt dt = Pm e dt 0 e-at Это интеграл вида: e-at dt =- a Поэтому - +iw t - e Pm S(w) = Pm 11. (I.21) = + iw + iw Для модуля S(w) получаем:

Pm S(w) =, (I.22) + w или для Pm S(w) = (I.23) + wВыражение (I.23) называется энергетическим спектром взрыва. Оно показывает, что для импульса вида (I.16) энергетический спектр в 1 области низких частот (W << ) не зависит от частоты, а при W >> убывает как.

W Невзрывные источники возбуждения Наряду со взрывным способом возбуждения колебаний в 60-х годах при морских сейсмоакустических работах нашли широкое применение бестротиловые источники, в которых возбуждение звуковых колебаний производится с помощью электроискрового разряда (спаркеры), воспламенением смеси водорода и пропана (установки УГД - газовой детонации), пневмопушки (аэрганы), работающие на сжатом воздухе, который под большим давлением схлопывается из камеры в воду. Все эти источники дают ударный импульс, который по мощности и частотному спектру во многом сходен с ударным импульсом, получаемым от взрыва TNT. Существует еще и третий вид источников - тональные источники. К ним относятся гидролокаторы, эхолоты, рыболоты. В этих источниках возбуждается синусоидальный импульс ограниченной длительности вида:

= A sin(wt - c ), Такой импульс имеет небольшую интенсивность и развивается без разрыва среды, как это имеет место при взрыве, т.е. в рамках линейного процесса.

Тональное излучение производится с помощью пьезо- и магнитострикционных антенн. Напомним, что пьезоэлектрический эффект характеризует появление электрических зарядов на поверхности некоторых кристаллов под действием приложенной к ним механической силы. Это прямой пьезоэффект. Появление деформаций кристаллов под действием приложенного электрического поля называется обратным пьезоэффектом.

Пьезоэффектом обладают кварц, турмалин, сегнетовая соль, керамика титаната бария, цирконата свинца и др. Возникающие на поверхности кристалла электрические заряды пропорциональны приложенной силе и обратно пропорциональны величине заряда.

Обратимость свойств пьезоэлектриков позволяет использовать их в качестве излучателей и в качестве приемников одновременно.

Магнитострикцией называется изменение размеров некоторых ферромагнитных тел под влиянием магнитного поля, или, наоборот, изменение магнитного поля под влиянием механических напряжений. Это соответственно прямой и обратный эффекты.

Магнитострикцией обладают ферромагнетики Ni, Co, Cr, Fe и их сплавы FeAl, FePt, NiFePd и др. Различают линейную, объемную и круговую магнитострикцию. Первая связана с изменением длины тела, вторая - объема, третья - кручения. В гидроакустике используется обычно линейная магнитострикция, дающая наибольший эффект. При этом прямой магнитострикционный эффект также как и прямой пьезоэффект используется для излучения звуковых колебаний, а обратный эффект - для приема акустических колебаний.

Излучение монополя. Любой сложный источник звуковых колебаний можно представить в виде суммы простых точечных источников.

Единичный источник обычно представляется в виде сферы, пульсирующей с одинаковой скоростью по всем направлениям радиуса-вектора. Источник такого типа называется монополь (рис. 6).



Потенциал монополя в области длины волны можно выразить в виде:

= eiwt (I.24) r откуда на поверхности сферы при r=r = eiwt = 0eiwt. (I.25) rСледовательно, амплитуда источника равна:

(I.26) 0 =0r0 2.

Поскольку сила источника Q равна произведению вектора скорости r c на площадь излучаемой поверхности dS, то r r Q = c ndS, (I.27) S r где n - единичный вектор, нормальный к поверхности сферы.

Следовательно, Q = 4r0 20 (I.28) Откуда для потенциала точечного источника окончательно получаем:

Q = ei (wt-kr ) (I.29) 4r Излучение двухточечного источника. Двухточечным источником называется источник, состоящий из двух монополей, работающих синфазно. Если излучение двух монополей происходит с отставанием один от другого на, то такой работающий в противофазе ансамбль называется диполем.

Рассмотрим потенциал акустического поля синфазно работающего двухточечного источника в точке Р, расположенной на расстоянии r от середины расстояния между монополями, равного d (рис. 7).

Общее давление в точке Р равно сумме давлений, создаваемым каждым монополем:

Q1 QP = ei (wt-kr1 ) + ei (wt-kr2 ) (I.30) 4r1 4rЕсли расстояние до Р велико, то прямые r1 и r2 можно считать параллельными, тогда d d r1 = r - sin, r2 = r + sin и r2r.

Поэтому Q sin (kd ) -i sin (kd 2) P = ei(wt -kr ) ei 2 + e (I.31) 4r или Q P = ei (wt-kr ) cos, (I.32) 2r где d = sin (I.33) Вдоль оси симметрии системы, т.е. при =0 источники работают в фазе и дадут максимальное давление:

Q P0 = ei (wt-kr0 ) (I.34) 2rОтношение давления в любой точке плоскости Р к давлению по оси симметрии Р0 определяет геометрическое место точек диаграммы направленности системы из двух излучателей:

P d = cos = cos sin. (I.35) PP Из 3.21 видно, что величина отношения зависит от расстояния d Pмежду источниками и длины излучаемой волны, т.е. от d/.

Для малого d источники сливаются в один монополь и система лишена направленности. Для отношения d/ превышающего диаграмма проходит через нуль прежде чем достигнет максимального значения (рис. 8). Максимальное значение Р между нулями называется главным максимумом или главным лепестком направленности.

Добавочные максимумы (лепестки) называют вторичными или добавочными лепестками направленности.

Угол раствора главного лепестка называется остротой направленности. Таким образом, диаграмма направленности источника излучения характеризует его силу по различным направлениям, что позволяет ориентировать систему излучателей в направлении излучаемого объекта.

Приемные системы. В гидроакустике и эхолотировании в качестве приемников акустических колебаний используется один и тот же преобразователь для передачи и приема колебаний.

В сейсмоакустике обычно применяются буксируемые массивные приемные системы, составленные из цепочки приемников, соединенных между собой параллельно. Такие системы (пьезокосы) собираются в полихлорвиниловых шлангах, заполняемых непроводящей жидкостью, соляром, касторовым или трансформаторным маслом и на глубине 5—15 м буксируется за судном. При работе ГСЗ используются одиночные гидрофоны, состоящие из нескольких чувствительных элементов. Обычно в качестве последних используется керамика титаната бария. Чувствительность гидрофонов и пьезокос, называемых также акустическими антеннами, зависит от эффективной приемной площади пьезоэлементов.

Акустические приемные антенны могут быть настроены на любую полосу частот. Для этой цели применяется группирование отдельных чувствительных элементов, путем расположения последних на различных расстояниях друг от друга и между группами, составленными из нескольких элементов.

Расчет интервалов между элементами и группами производится аналогично расчету поля излучателей, рассматриваемого выше. В основе его лежит правильный выбор соотношения d/. При этом учитываются преобладающие длины волн шума и длины волн полезных сигналов. Настройка антенны производится таким образом, чтобы шум подавлялся, а полезный сигнал в требуемом диапазоне частот достигал максимального значения.

Таким образом, создаются направленные антенны, которые как и излучатели характеризуются своей диаграммой направленности и избирательностью по частоте. С этой целью создаются довольно длинные пьезокосы (20—100 м) для работ методом отраженных волн или многоэлементальные гидрофоны для работ методом ГСЗ.

§4. Методика морских сейсмоакустических исследований Метод ГСЗ Глубинное сейсмическое зондирование, или сокращенно ГСЗ, находит широкое применение при исследовании глубинной структуры земной коры и верхней мантии на морях и океанах.

Сущность метода заключается в следующем. Один из кораблей ложится в дрейф или (если позволяет глубина) становится на якорь.

Другой корабль, двигаясь вдоль профиля наблюдений, осуществляет последовательный ряд взрывов зарядов TNT или глубинных бомб в воде на глубинах 40-90 м (рис. 9). Интервал между взрывами обычно составляет 2 мили.. Преломленные и отраженные от границ земной коры волны регистрируются дрейфующим кораблем с помощью гидрофонов, снабженных чувствительными элементами из керамики титаната бария и погруженных на глубину 30—35 м.

Сигналы от каждого из 2—4 гидрофонов после усиления и фильтрации записываются осциллографом на фотобумаге или на регистраторе, работающем по принципу фототелеграфного аппарата, осуществляющего дискретную запись изображения. В первом случае получается импульсная запись сейсмических колебаний, во втором - график зависимости времени прихода волн от расстояния взрывприбор, называющийся годографом. Наклон годографа определяется скоростью распространения преломленной или отраженной на данной границе раздела слоев волны (рис. 10).





После того, как сигналы от слоев станут слабыми, соизмеримыми с уровнем помех, отстрел профиля прекращается. Взрывающий корабль ложится в дрейф и становится регистрирующим, а регистрирующий корабль движется к нему производя взрывы. Таким образом, производится отстрел по системе встречных годографов (рис.

11). Если же регистрирующий корабль после завершения отстрела профиля перемещается вдоль него и ведет дальнейшую регистрацию в другой точке профиля, отстающей от первой, например, на расстоянии 4—5 миль, то такая система наблюдений позволяет получить нагоняющие годографы.

Встречные или нагоняющие годографы позволяют определять наклоны границ раздела и тем исключать возможные ошибки в вычислении по ним скоростей за счет искривления годографа на наклонной границе раздела.

Признаком наличия наклона границы будет непараллельность нагоняющих годографов и различие времен Т1 и Т2 во взаимных точках встречных годографов. Длина годографов обычно не превышает 80—100 км. Детальность исследования земной коры методом ГСЗ небольшая, т.к. диапазон частот сейсмических колебаний весьма низкий — 5—12 гц. Следовательно, длины волн будут измеряться сотнями метров. Для изучения более тонкой структуры осадочной толщи и верхов консолидированной (базальтовой) коры хорошие результаты дает применение автономных радиосейсмоакустических буев. Такой буй состоит из контейнера, в котором размещается приемная и передающая аппаратура и гидрофон с предварительным усилителем. Усилитель имеет два широкополосных канала с разными уровнями чувствительности, а также низкочастотный канал с диапазоном 3-30 гц и звуковой канал — 40—250 гц. Сигнал с гидрофона, подвешенного на экранированном кабеле на глубину 50 м и либо записывается на портативный осциллограф или магнитофон, непосредственно в буе, либо передается через радиопередатчик на взрывающее судно. На судне сигнал отфильтровывается от радиочастот и переписывается на осциллографе или фототелеграфном регистраторе. Мощность передатчика может достичь 25 ватт, частота 3—45 МГц. Буй обеспечивает дальность приема по радиоканалу до 50 и более километров. Для получения системы нагоняющих годографов несколько буев расставляются вдоль профиля наблюдения с интервалом 1—2 мили. После расстановки буев корабль производит серию взрывов вдоль намеченного профиля и прекращает работу после того, как уровень сигналов станет соизмеримым с уровнем помех. Момент времени взрыва регистрируется по отдельному каналу на корабле, что дает возможность вести отсчет времени прихода различных волн к гидрофону буя от точки взрыва. Глубина моря при этом определяется по эхолоту. Одновременно с этим с помощью буксируемых гидрофонов производится регистрация нормально отраженных от дна и подводных слоев волн в районе взрыва. Это дает возможность изучить тонкую структуру осадочного разреза вдоль профиля ГСЗ. После завершения работы буи поднимаются в борт судна.

Метод сейсмопрофилирования До 1960—1965 гг. основная часть информации о тонкой структуре осадочной толщи дна океана добывалась путем проведения дискретных (точечных) зондирований методом отраженных волн (ТСЗ МОВ).

Первые советские сейсмические исследования в океане проводились по этой методике. Поскольку основные представления о сейсмической структуре осадков и рельефа подстилающего фундамента были получены благодаря данным ТСЗ МОВ, мы считаем необходимым напомнить сущность этой методики исследований. В качестве приемной системы использовалась коса длиной 500 метров, снабженная двумя гидрофонами. Последние для обеспечения приема сигналов в полосе частот 20—25 Гц были погружены на глубину метров с шагом 100 метров. Гидрофоны были снабжены четырьмя чувствительными элементами из керамики, титаната бария, соединенных параллельно и согласующим трансформатором. С помощью системы пенопластовых поплавков косе была придана положительная плавучесть, что обеспечивало гидрофонам постоянное заглубление. Заряд либо подвешивался на конце косы, либо дрейфовал на отдельной боевой магистрали, длиной 150 метров. Магнитная запись колебаний осуществлялась с отдельного гидрофона. Последний не имел согласующего трансформатора (во избежание искажающего влияния его частотной характеристики на спектр отраженных сигналов) и состоял из 10 кристаллов ПКС-4, соединенных параллельно.

Это обеспечивало понижение сопротивления до 2—4 мом., повышало чувствительность и улучшало согласование с высокоомным входом магнитофона. Этот гидрофон опускался непосредственно с борта судна на глубину до 50 метров, что обеспечивало возможность регистрации низкочастотных колебаний от глубоких слоев земной коры. Величина подрываемых зарядов колебалась от 1 до5 кг. Взрывы производились на глубине 1,5 метра, что исключало образование парогазового пузыря и соответственно повторных ударов.

Поскольку коса не была приспособлена к работе на ходу судна, то все наблюдения производились во время дрейфа или полной остановки двигателей.

Приемная система состояла из стандартной сейсмостанции СС2ЧП, осциллографа Н-700, самописца уровня (для визуального контроля интенсивности колебаний) Н-220 и магнитофона. Питание аппаратуры осуществлялось от нескольких аккумуляторных батарей НКН-100 и бортовой сети.

Pages:     | 1 | 2 || 4 | 5 |   ...   | 15 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.