WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 23 |
Сборник трудов II Всероссийской научно-технической конференции «Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий» 10-11.12.2009 Санкт-Петербург ОАО «Санкт-Петербургский зональный научно-исследовательский и проектный институт жилищно-гражданских зданий» (СПбЗНИиПИ) ГОУ «Санкт-Петербургский государственный политехнический университет» (СПбГПУ) НП «Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике» (АВОК) ООО «АлгоритмСтрой» ПНИПКУ «Венчур» НИУПЦ «Межрегиональный институт окна» Сборник трудов II Всероссийской научно-технической конференции «Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий» 10-11.12.2009 Санкт-Петербург Санкт-Петербург 2009 УДК 699.86 Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий: Сборник трудов II Всероссийской научнотехнической конференции. 10-11.12.2009. – СПб., 2009. – 154 с.

Сборник содержит статьи по материалам докладов участников научнотехнической конференции «Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий». В 2009 г. основными темами конференции стали: теплозащитные свойства ограждающих конструкций;

влажностный режим строительных конструкций; долговечность строительных конструкций; теплофизические свойства строительных материалов;

энергосбережение при строительстве и эксплуатации зданий; методология разработки нормативных документов по строительной теплофизике.

В сборник вошли научно-технические статьи представителей вузов, научно-исследовательских учреждений, проектных и производственных организаций из России, Украины и Финляндии.

Содержание  Kauppinen Timo. The use of building thermography in verification of energy efficiency....................................................................................................................................... Ананьев А.И., Абарыков В.П. Обоснование теплотехнических требований в межгосударственном стандарте ГОСТ 530-2007 «Кирпич и камень керамические.

Общие технические условия»..................................................................................... Вишневский А.А. Эксплуатационные свойства современного автоклавного газозолобетона........................................................................................................... Войлоков И.А. Перспективы развития рынка теплоизоляционных материалов.... Гагарин В.Г. Теплофизические свойства современных стеновых ограждающих конструкций многоэтажных зданий........................................................................... Горшков А.С., Войлоков И.А. Пути повышения энергоэффективности ограждающих конструкций зданий............................................................................ Дацюк Т.А., Меллех Т.Х. Расчет теплопотерь через неоднородные ограждающие конструкции................................................................................................................. Дацюк Т.А., Ярошенко С.Д. Повышение энергоэффективности зданий старой жилой застройки......................................................................................................... Кнатько М.В., Пестряков И.И., Горшков А.С., Рымкевич П.П. Опыт испытания стеновой конструкции в лабораторных и натурных условиях с целью прогнозирования ее эксплуатационного срока службы........................................... Кнатько М.В., Щербакова Е.В., Зеленая Е.В., Лаздовская М.А. Эффективные утеплители на основе торфа..................................................................................... Нациевский С.Ю., Алексеева Л.В. Вспученный перлит в строительстве. Вчера, сегодня, завтра........................................................................................................... Кузьменко Д.В. Легкие стальные ограждающие конструкции монолитных жилых зданий.......................................................................................................................... Леонтьева Ю.Н. Тепловлажностный режим ограждающих конструкций при наружном и внутреннем утеплении........................................................................... Лобов О.И., Ананьев А.И., Абарыков В.П., Синютин А.Е. Теплозащитные свойства и долговечность фасадных систем современных зданий....................................... Миков В.Л. О долговечности окон............................................................................. Миков В.Л., Куренкова А.Ю. «Человеческий фактор» и проблемы теплозащитных характеристик светопрозрачных ограждений......................................................... Павлова М.О., Захаров В.А., Павленко М.Н. Инновационные методы усиления энергоэффективных наружных стен с облицовкой из керамического кирпича.... Пономарев О.И., Ломова Л.М., Стульева И.В. Современные кладочные стеновые материалы в несущих и ограждающих конструкциях энергоэффективных зданий................................................................................... Пономарев О.И., Горбунов А.М., Григорьев Д.С. Напряженно-деформативное состояние энергоэффективной трехслойной кладки при температурных деформациях............................................................................................................ Редько Ю.Б., Гринфельд Г.И. Теплотехнические испытания кладки из газобетонных блоков марки по плотности D400.................................................... Редько Ю.Б., Ефименко М.Н. Определение теплотехнических свойств блоков из газобетона.................................................................................................................



Рымкевич П.П., Хохлова М.В., Кокович В.Б., Рымкевич О.В., Горшков А.С. Физикоматематические основы для описания нестационарной теплопроводности через ограждающие конструкции зданий и сооружений.................................................. Рымкевич П.П., Рымкевич О.В., Горшков А.С. Математическое моделирование процессов нестационарной теплопроводности через ограждающие конструкции при наличии теплопроводных включений............................................................... Коцкович В.Б., Рымкевич О.В., Рымкевич П.П., Хохлова М.В. Оценка среднего времени прохождения тепла через многослойную ограждающую конструкцию с позиций физической кинетики................................................................................. Самарин О.Д. Об уровне теплозащиты несветопрозрачных ограждений здания и о современных подходах к его нормированию....................................................... Соколов Н.А., Соколов А.Н. Обеспечение единства измерений теплофизических и теплотехнических параметров строительных материалов и конструкций........... Цыгановский Е.Ю. Теплозащитные свойства теплоизоляционных навесных фасадных систем..................................................................................................... Kauppinen Timo. The use of building thermography in verification of energy efficiency Mr. Timo Kauppinen, M.Sc., Senior Research Scientist, VTT (Finland) The use of building thermography in verification of energy efficiency Introduction Thermography, as properly used, could evolve into a valuable diagnostic tool for predictive maintenance and for quality control in buildings. It also needs other supporting measurements and calculation tools. By detecting anomalies often invisible to the naked eye, thermography allows corrective measures to be taken before electrical, mechanical, or process equipment fails. Nonetheless, there are different technological problems that are related to the accuracy and reliability of building thermography diagnostics. Although cost, mainly due to time, personnel, camera cost, training, or contractor expense, could be an important barrier in order to adopt infrared thermography as an inspection tool in buildings and building diagnostics, a good thermographic inspection process can pay back very quickly by finding defects before they cause equipment damage or a process shutdown.

The most-mentioned aspect of the financial barrier is the lack of knowledge of the true return on investment and/or the lack of awareness of the benefits to the bottom line. Furthermore, one important aspect of the need for well-trained personnel is the safety issue involved in inspections. The proper interpretation of the results (i.e. the thermal response) is the key issue, and the possibilities combining heat transfer models and thermography results have not been used as well as it could be. There is a lot of work to do in harmonizing procedures and produce guidelines for building thermography in Europe with the intention of maintaining a high standard of work. For instance, now ongoing renewal of ISO-standard would be used in the buildings diagnostics and monitoring taking into consideration various climate zones and environmental parameters.

Background Thermography has been used in Finland in building survey from the late 70s.

The service has been provided by consultants, whose background was varied. When technology and devices have improved and the prices have increased, more and more doers have come into the market. There had been about 25 years unorganized and more or less wild period, without any generally accepted rules for interpretation, as well as for that, how to order thermography services, how to report, how to do the practical work in the buildings etc.

At the same time, building developers and contractors have begun to use thermography for quality control in new building. Thermography has also been used in renovation planning. The problem was, as mentioned before, that there are no procedures for building thermography, no guidelines to order the thermography services, no instructions how to scan, how to report and most important - how to interpret the results. That fact has caused a lot of problems and also damaged the reputation and reliability of the method.

In the year 2004 the various organizations in building trade launched a pilot project to certificate building thermographers. The procedure is divided into two parts:

Part 1 is Level I (the basis of thermography) and Part II (divided into two periods) thermography applications of buildings, including also information on building physics, heat and mass transfer and structures.

Kauppinen Timo. The use of building thermography in verification of energy efficiency Both parts will take a week, two weeks in total with the examinations. The procedure follows moisture measurement procedure - certification of building moisture measurements started a couple of years ago. To the end of the year 2009 many courses have been completed and several persons have received a certificate.

During the certification process, two guidelines have been published, as a part of RT (Building Information) – files: Instructions for ordering, for practical field work and for reporting of thermography survey in buildings.





The guidelines contain also basics for interpretation. The interpretation is consistent with the other existing directions (building codes etc). In the turn of the year 2005-2006 a new book of building thermography was published. There is still lack of comprehensive but unambiguous rules for interpretation.

In this presentation we will introduce experiences on the courses, the main problems posed the participants and findings during the last two-three years field work.

We also will introduce briefly the structure and content of the guidelines and an example how to use thermography as a tool of quality control in new building.

New challenges - EPBD EPBD-directive (European performance of Buildings Directive) has taken into the use in European Union Countries. In Finland, in connection with the directive and with harmonization of building codes, the building codes dealing with insulation and energy use has been renewed. At the first time there is a requirement of energy efficiency calculations. Energy efficiency is connected with energy labelling. Also first time there is now prerequisites for air tightness of buildings. These new challenges have created a boom of increased quality control needs in construction companies, including different verification methods. The use of thermography and air-tightness test (blower door tests) has been exploited by increasing speed. The interpretation of result will be a growing problem, even lot of work has been done e.g. in certification procedure of building thermographers. In this presentation some results of multi-storey apartment houses and other targets will be presented, and discussion about the problems which may occur in the future.

Building Commissioning (Cx) A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. Similar to Cx-procedures used in the USA, this procedure will confirm the precise documentation of client’s goals, definition of planning goals and the performance of the building. The method has been tested in pilot buildings and the aim is to develop it further in practical construction projects.

The performance has been tried to confirm by various quality control methods during design-, construction and mobilization stages. The completed building, however, has not been as such as the client has ordered or wanted. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Often the reasons are related to problems in building envelope, in building services, in HVAC-system, in automation system and, as combined effect, failures in indoor climate. In the worst cases there may be health hazards or risks. The energy consumption might have exceeded the estimated consumption. Part of the problems has been caused by improper use. In consequence of the problems the life-cycles of these buildings are shorter than in average. Need to repair is increasing as well as life-cycle costs.

There have been defects even in the pre-design phase, when the client or the representative of the client was not able to determine the goals precisely enough. If the Kauppinen Timo. The use of building thermography in verification of energy efficiency various system solutions are not integrated properly during the design phase, problems may occur during the operational period in the joint operations of the systems. The installation defects at the building site will increase the risks of malfunction. All the malfunctions have not been detected during TAB (testing and balancing)-tests, partially because of defective working methods and tight timetables The energy consumption level of a building is mainly determined when we set the goals during the pre-design phase and the design process. At that time it’s the best possibility to affect widely on the factors of indoor climate because the project budget is not yet exactly fixed. In this presentation the main concept of the Finnish Building Commissioning procedure (ToVa) will be introduced and also some typical problems in performance of buildings which have been found.

Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper some results of pilot buildings will be presented.

In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential.

Energy Audit The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

Energy efficiency and air tightness From the year 2007 the buildings must have energy efficiency calculations, which requirements are now part of Building Code Book. This is based on European Performance of Buildings Directive. According the code, the air infiltration must be calculated based on air tightness number 4.0 1/h [changes/hour], if there are no measurements or, if the uncontrolled rate of ventilation has not shown by some other methods. This value will be probably decreased in the future.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 23 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.