WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 |

В начале XX века существовали учебники (повышенной сложности), в которых всё это делалось аккуратно. Ничего особенно сложного здесь нет, но требуется время, которого в общеобразовательной школе хватить на это не может. В учебнике Киселёва существование площади, имеющей то самое свойство, которое мы сейчас обсуждаем, честно постулировалось как некое допущение, причём говорилось, что это на самом деле верно, но мы этого доказывать не будем. Так что и теорема Пифагора, если её доказывать с площадями, в чисто логическом отношении останется не совсем доказанной.

Замечание: раз уж я об этом заговорил, то остановлюсь на том доказательстве теоремы Пифагора, которое раньше в школе было, так сказать, основным. Оно не обращается к площадям, а основано на простом геометрическом построении и подобии возникающих при этом треугольников. Опустим в прямоугольном треугольнике ABC с прямым углом в вершине C высоту CH на гипотенузу AB=c (рис. 2).

Основание H высоты разбивает гипотенузу на отрезки AH=d и BH=e. Как легко видеть, получаются пары подобных треугольников ACB и AHC, BCA и BHC.

A Например, ACB=AHC (оба эти угла прямые) и BAC=CAH (это же один и тот же угол). Отсюда d e a d b =, =, a c b c b H а следовательно, a2=ce, b2=cd. Вот и получается, что e a2+b2=c(d+e)=c2.

a C B Это ничуть не длиннее вавилонского доказательства.

Рис. Но — не знаю, по каким психологическим причинам, — вавилонское доказательство воспринимается и запоминается легче.

Между прочим, приведённое выше простое доказательство формулы (2) для натуральных решений уравнения (1) тоже содержит некий деликатный момент. До (6) не к чему придраться*). А вот когда от (6) мы переходим к (3), мы используем следующее соображение: если квадрат некоторого натурального числа, скажем m2, делится на некоторое простое число p, то и само это ч исло, т. е.

m, тоже делится на p. Причём мы используем его дважды: один раз — для нечётного p, второй —для p=2.

Для p=2 доказательство данного утверждения тривиально (если бы m было нечётным, оно представлялось бы в виде 2l-1, откуда m2=4l2-4l+1 — нечётное число). А вот для неизвестного нам заранее (т. е., можно сказать, произвольного) p доказательство требует иных соображений. Известно и легко доказывается, что любое натуральное число m>1 разлагается в произведение простых чисел:

m=pk1 ·...·pkr (7) 1 r (pi —простые, pi=pj при i=j, ki — натуральные). Тогда, конечно, m2=p2k1 ·...·p2kr, (8) 1 r и всё, что нам надо, — это знать, что если m2 делится на простое число p, то p совпадает с одним из pi. По существу, здесь не важно, *) Можно придраться точно таким же образом, как это будет сейчас сделано, к абзацу, начинающемуся со слов <Так что если бы я хотел настаивать на обратном утверждении>. Но в том же абзаце объяснено, что дальнейшее не зависит от обсуждаемого в нём утверждения, так что с точки зрения полноты доказательства (2) этого абзаца не существует.

что в (8) все показатели 2ki являются чётными, так что если изменить обозначения, то речь идёт о следующем утверждении: если простое число p делит число m, разложенное в произведение простых чисел согласно (7), то p совпадает с одним из pi. А последнее по существу означает, что разложить число m на простые множители можно только единственным способом.

Это кажется очевидным и, конечно, известно из арифметической практики. Коль скоро мы знаем, что 120=23·3·5, то не делится на 7, равно как и не делится на 32=9. И то, и другое легко проверить непосредственно. Вероятно, помимо эмпирической уверенности, возникающей из примеров, полусознательно работает ещё такое <общее> соображение: разлагая число на простые множители, мы как бы разбираем его на неразбирающиеся далее составные части, а в повседневной жизни мы постоянно убеждаемся, что для одной и той же вещи совокупность её составных частей всегда получается одной и той же. Скажем, если, разбирая будильник, мы получили какие-то зубчатые колёсики, то не может случиться, что, разбирая другой раз точно такой же будильник, мы получим шестерёнки другого размера или в другом количестве.

Но числа — не будильники, а опыт с конкретными числовыми примерами ещё не доказывает общего утверждения, относящегося ко всем натуральным числам (хотя и может подкрепить уверенность в его справедливости). На самом деле утверждение о единственности разложения на простые сомножители справедливо, но его надо доказывать. Интересно, что первым осознал необходимость в том, чтобы это утверждение было ясно сформулировано и доказано, был великий немецкий математик К. Гаусс.

Это произошло сравнительно поздно — около 200 лет назад, когда математика была уже достаточно развитой наукой.

Выдающийся немецкий математик Х. Хассе в одной из своих книг выражал в исторических замечаниях недоумение, почему у Евклида нет теоремы об однозначности разложения числа на простые множители, хотя у него есть теорема, что если произведение двух натуральных чисел делится на простое число p, то хотя быодно из этих чисел делится на p. (Последнего нам было бы достаточно.) С нашей теперешней точки зрения, главное тем самым было сделано, и до однозначности разложения оставался только один шаг, уже не трудный.

В доказательстве сформулированной теоремы (а значит, и в доказательстве однозначности разложения натурального числа на простые сомножители) не используется никакой <высокой науки>, но оно не такое уж короткое; правда, попутно получаются ещё кое-какие важные результаты. Позднее, уже за XX век, было придумано другое доказательство, более короткое, но не дающее ничего сверх доказываемого утверждения. Но и оно не такое уж короткое и простое;



я сомневаюсь, чтобы в школе (исключая спецшколы или спецклассы) на него можно было тратить время. Но это относится к школе, а Евклида даже и более длинное рассуждение не испугало.

Хассе полагал, что древним грекам однозначность разложения на простые множители всё-таки была известна. Иное мнение высказано в учебнике по теории чисел, написанном другим выдающимся учёным — английским математиком Г. Харди — совместно с его соотечественником Э. Райтом. Они указывают, что древнегреческий математик попросту был бы не в состоянии сформулировать теорему об однозначности разложения натурального числа на простые множители, потому что у него не было алгебраических обозначений. Ведь если я говорю, что <разложение на простые сомножители единственно>, то это не полная формулировка, а скорее сокращённое название результата. А в чём же, собственно, он состоит Вот в чём. Пусть в дополнение к (7) имеется ещё одно разложение m на простые множители:

m=ql1 ·...·qls 1 s (qi —простые, qi=qj при i=j, li — натуральные). Тогда r=s, ч исла p1,..., pr с точностью до порядка, в котором они пронумерованы, совпадают с q1,..., qs и показатели при совпадающих простых сомножителях тоже совпадают: если pi=qj, то ki=lj. Попробуйте сформулировать (только сформулировать!) всё это, не прибегая к буквенным обозначениям! А у Евклида, как указывают Харди и Райт, не было даже слова для обозначения произведения четырёх и более множителей.

Я хочу ещё немного остановиться на различии между числами и будильниками. Что различия имеются, это понятно даже людям, которые от математики далеки: им кажется, что математические объекты скорее напоминают снотворное. Но то различие между математическими объектами и будильниками, о котором я сейчас скажу, может показаться неожиданным. Рассмотрим пародию на арифметику, в которой <ареной действия> является множество*) M натуральных чисел вида 4k+1 с целыми k0. Других чисел, кроме таких, для нас сейчас как бы не существует. Множество M, как говорят, замкнуто относительно умножения — это значит, что произведение любых двух его элементов снова принадлежит M. Действительно, сразу проверяется, что произведение *) Ниже это слово встречается несколько раз. Вероятно, оно вам уже знакомо, но я всё же напомню, что множество — это совокупность (система, класс, собрание, коллекция) каких-нибудь объектов (не обязательно чисел). Наглядно можно представить себе, что эти объекты как бы сложены в мешок, причём он прозрачный:

мы как бы <видим> сложенные в мешок предметы и можем говорить не только о мешке как о некоем едином целом, но и о его содержимом. Примеры: множество натуральных чисел, множество слушателей в аудитории. В отличие от употребления слова <множество> в обычном языке, в математике при его употреблении вовсе не имеют в виду, что в множество входит много объектов. Если объект a входит в множество A, то говорят, что a является элементом A, a принадлежит A, и пишут aA. Подмножество множества A — это такое множество B, все элементы которого принадлежат A, т. е., так сказать, B —<ч асть> A (только слово <часть> здесь употребляется в расширенном смысле: не исключено, что B=A). Например, множество чётных натуральных чисел — подмножество множества всех натуральных ч исел. Вместо того ч тобы говорить словами , пишут BA.

двух чисел вида 4k+1 снова имеет вид 4k+1. Некоторые числа из M являются произведениями чисел из M, ни одно из которых не является единицей. Другие числа нельзя представить в таком виде; их естественно называть неразложимыми. Почти сразу же очевидно, что 9 — неразложимое число. (В M имеется всего одно число, отличное от 1, которое меньше 9, — это 5. Но 9 не делится на 5.) Проверим, что 49 тоже неразложимое число. В противном случае мы имели бы 49=(4a+1)(4b+1)=16ab+4(a+b)+с некоторыми натуральными a, b; отсюда 48=16ab+4(a+b), 12=4ab+(a+b)>4ab, 3>ab, что возможно, лишь когда оба натуральных числа a, b равны или когда одно из них равно 1, другое равно 2. Соответствующие произведения были бы 5·5 или 5·9; ни в том, ни в другом случае не получается 49. Аналогично доказывается неразложимость 21. С другой стороны, каждое разложимое число из M разлагается в произведение неразложимых чисел (последние, таким образом, играют в нашей пародийной <системе чисел> M такую же роль, какую играют простые числа среди всех натуральных чисел). Действительно, если mM — разложимое число, то m=kl с некоторыми k, lM, прич ём k

если одно из них или они оба разложимы, то разложим его (их) на множители, и т. д. При этом рассматриваемые числа всё время уменьшаются, так что рано или поздно этот процесс должен остановиться и мы получим разложение m на неразложимые множители. Это рассуждение — точно такое же, каким доказывается, что любое составное натуральное число разлагается в произведение простых чисел; в этом отношении наша пародийная арифметика не отличается от обычной. А вот в каком она отличается:

441=212=9·49, причём 21, 9 и 49 — неразложимые элементы M. Выходит, ч то <будильник> 441 можно разобрать на два одинаковых <колёсика> 21, а можно — на другие <колёсики> 9 и 49.

Вы, вероятно, знаете доказательство иррациональности 2.

А вот используя однозначность разложения на простые множители, ничего не стоит доказать в два слова, что если натуральное число m не является k-й степенью никакого натурального числа, то k m — иррациональное число. Попробуйте сделать это! Вы увидите, насколько расширятся ваши возможности при использовании теоремы об однозначности разложения на простые множители — теоремы, упоминание о которой может показаться занудным педантизмом. Так что, с одной стороны, я уже сказал, что за всё приходится платить, но, с другой стороны, платить есть за что.





Говоря о построении математики как систематической науки, хочу отметить, что дедуктивное и систематическое построение — это не одно и то же. В школе арифметика и алгебра излагаются, конечно, систематически, но нет и речи о том, чтобы их выводить дедуктивно из аксиом. А о геометрии по крайней мере объясняют, что её в принципе можно строить дедуктивно, и поясняют это на примерах, так сказать, каких-то фрагментов геометрии.

На самом деле дедуктивно можно построить не только геометрию, но, оставаясь в пределах школьного материала, и алгебру, и арифметику. Я приведу сейчас те аксиомы, на которых основана арифметика — так называемые аксиомы Пеано. Сформулировал их примерно век назад итальянский математик Дж. Пеано. Такая поздняя формулировка аксиом арифметики — своего рода исторический парадокс.

В этих аксиомах речь идёт только о натуральных числах. Множество натуральных чисел обычно обозначают через. Это своего рода стандарт. Обычная латинская буква N может обозначать что угодно, а вот — это обязательно множество натуральных чисел.

Среди натуральных чисел имеется одно особенное, которое выделяется с самого начала, — так называемая единица, обозначаемая через 1. На самом деле это, конечно, та самая единица, которую вы все хорошо знаете, но в данный момент это просто какое-то специальное натуральное число, о котором кое-что будет сказано в аксиомах. Далее, в множестве натуральных чисел имеются различные операции, которые вы знаете: сложение, умножение, а в известных случаях там определено также вычитание и деление. Но если бы мы захотели перечислить в виде аксиом основные свойства этих операций, формулировка получилась бы слишком длинной. Пеано заметил, что можно воспользоваться одной-единственной операцией, с которой вы познакомились ещё раньше, чем научились складывать, — с переходом к следующему числу. Когда ребёнок считает <один, два, три,...>, он как раз называет вслед за одним числом то число, которое за ним следует в ряду натуральных чисел. Освоившись со сложением, вы поняли, что число, следующее за x, —это x+1, и поэтому операция перехода к следующему числу как бы отступила на второй план, став частным случаем сложения. Теперь нам предлагается как бы вернуться в детство и временно забыть о сложении, а считать основной исходной операцией операцию перехода к следующему числу. Конечно, раз пока нет сложения, то нехорошо обозначать число, следующее за x, через x+1. Но как-то его обозначить надо, хотя в детстве мы обходились без всяких обозначений. Обозначим его через x.

Итак, у нас имеется некое множество, называемое <множеством натуральных чисел>, в нём особо выделен некоторый элемент (<единица>) и введена операция (отображение, функция), сопоставляющая каждому x некоторое число x (<число, следующее за x>). При этом выполняются следующие аксиомы:

1. Единица не следует ни за каким натуральным числом, т. е.

при всех x обязательно 1=x.

2. Если x =y, то x=y. Можно сказать, что отображение, при котором каждое x переходит в x, никогда не переводит различные числа в одно.

3. Самая сложная аксиома — аксиома индукции. Пусть M — такое подмножество, что а) 1M (M содержит единицу);

б) если xM, то и x M (вместе с каждым числом M содержит также и следующее за ним число). Тогда M=.

Вот и всё. Гораздо короче и проще, чем аксиомы геометрии. И на такой, казалось бы, скудной основе можно построить всю арифметику! Определить сложение и другие арифметические действия над числами, ввести отрицательные, рациональные, иррациональные и комплексные числа, доказать основные правила действий... Но ясно, что это не может быть сделано в два слова.

Надо пройти путь примерно такой же длины, как в геометрии, пока доберёшься, скажем, до олимпиадных задач. В общеобразовательной школе этого, конечно, нет и никогда не будет.

Тут есть ещё одно обстоятельство, о котором надо сказать.

Арифметика ведь строится не только на базе этих трёх аксиом.

При этом используется логика — как же иначе И используются кое-какие сведения о множествах — множества ведь фигурируют в наших исходных формулировках. Между прочим, и логику, и требуемые сведения о множествах тоже можно изложить аксиоматически, но это будет уже посложнее аксиом Пеано.

ВНУТРЕННИЕ МАТЕМАТИЧЕСКИЕ ПРОБЛЕМЫ Я говорил о построении систематических теорий. Вы знаете две такие теории: геометрию и арифметику вместе с алгеброй (в пределах школьного курса последние две на самом деле составляют единое целое). Но в математике много различных систематически построенных теорий с различными предметами исследования и различной степени общности. Те из вас, которые учатся в спецшколах или спецклассах физико-математического направления, возможно, знают, что алгебра как бы <отсоединяется> от арифметического материала и в таком виде может применяться к совсем иным объектам.

Но если говорить о внутреннем развитии математики, не вызванном её приложениями (по крайней мере, не вызванном непосредственно), то есть и другая сторона дела — решение различных проблем. Вы представляете себе задачи, которые вам предлагают на математических олимпиадах и аналогичных соревнованиях.

Pages:     | 1 | 2 || 4 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.